| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 
 | '''surfaceslab.py - Window for setting up surfaces
'''
import ase.build as build
import ase.gui.ui as ui
from ase.data import reference_states
from ase.gui.i18n import _, ngettext
from ase.gui.widgets import Element, pybutton
introtext = _("""\
  Use this dialog to create surface slabs.  Select the element by
writing the chemical symbol or the atomic number in the box.  Then
select the desired surface structure.  Note that some structures can
be created with an othogonal or a non-orthogonal unit cell, in these
cases the non-orthogonal unit cell will contain fewer atoms.
  If the structure matches the experimental crystal structure, you can
look up the lattice constant, otherwise you have to specify it
yourself.""")
# Name, structure, orthogonal, function
surfaces = [(_('FCC(100)'), _('fcc'), 'ortho', build.fcc100),
            (_('FCC(110)'), _('fcc'), 'ortho', build.fcc110),
            (_('FCC(111)'), _('fcc'), 'both', build.fcc111),
            (_('FCC(211)'), _('fcc'), 'ortho', build.fcc211),
            (_('BCC(100)'), _('bcc'), 'ortho', build.bcc100),
            (_('BCC(110)'), _('bcc'), 'both', build.bcc110),
            (_('BCC(111)'), _('bcc'), 'both', build.bcc111),
            (_('HCP(0001)'), _('hcp'), 'both', build.hcp0001),
            (_('HCP(10-10)'), _('hcp'), 'ortho', build.hcp10m10),
            (_('DIAMOND(100)'), _('diamond'), 'ortho', build.diamond100),
            (_('DIAMOND(111)'), _('diamond'), 'non-ortho', build.diamond111)]
structures, crystal, orthogonal, functions = zip(*surfaces)
py_template = """
from ase.build import {func}
atoms = {func}(symbol='{symbol}', size={size},
    a={a}, {c}vacuum={vacuum}, orthogonal={ortho})
"""
class SetupSurfaceSlab:
    '''Window for setting up a surface.'''
    def __init__(self, gui):
        self.element = Element('', self.apply)
        self.structure = ui.ComboBox(structures, structures,
                                     self.structure_changed)
        self.structure_warn = ui.Label('', 'red')
        self.orthogonal = ui.CheckButton('', True, self.make)
        self.lattice_a = ui.SpinBox(3.2, 0.0, 10.0, 0.001, self.make)
        self.retrieve = ui.Button(_('Get from database'),
                                  self.structure_changed)
        self.lattice_c = ui.SpinBox(None, 0.0, 10.0, 0.001, self.make)
        self.x = ui.SpinBox(1, 1, 30, 1, self.make)
        self.x_warn = ui.Label('', 'red')
        self.y = ui.SpinBox(1, 1, 30, 1, self.make)
        self.y_warn = ui.Label('', 'red')
        self.z = ui.SpinBox(1, 1, 30, 1, self.make)
        self.vacuum_check = ui.CheckButton('', False, self.vacuum_checked)
        self.vacuum = ui.SpinBox(5, 0, 40, 0.01, self.make)
        self.description = ui.Label('')
        win = self.win = ui.Window(_('Surface'), wmtype='utility')
        win.add(ui.Text(introtext))
        win.add(self.element)
        win.add([_('Structure:'), self.structure, self.structure_warn])
        win.add([_('Orthogonal cell:'), self.orthogonal])
        win.add([_('Lattice constant:')])
        win.add([_('\ta'), self.lattice_a, ('Å'), self.retrieve])
        win.add([_('\tc'), self.lattice_c, ('Å')])
        win.add([_('Size:')])
        win.add([_('\tx: '), self.x, _(' unit cells'), self.x_warn])
        win.add([_('\ty: '), self.y, _(' unit cells'), self.y_warn])
        win.add([_('\tz: '), self.z, _(' unit cells')])
        win.add([_('Vacuum: '), self.vacuum_check, self.vacuum, ('Å')])
        win.add(self.description)
        # TRANSLATORS: This is a title of a window.
        win.add([pybutton(_('Creating a surface.'), self.make),
                 ui.Button(_('Apply'), self.apply),
                 ui.Button(_('OK'), self.ok)])
        self.element.grab_focus()
        self.gui = gui
        self.atoms = None
        self.lattice_c.active = False
        self.vacuum.active = False
        self.structure_changed()
    def vacuum_checked(self, *args):
        if self.vacuum_check.var.get():
            self.vacuum.active = True
        else:
            self.vacuum.active = False
        self.make()
    def get_lattice(self, *args):
        if self.element.symbol is None:
            return
        ref = reference_states[self.element.Z]
        symmetry = "unknown"
        for struct in surfaces:
            if struct[0] == self.structure.value:
                symmetry = struct[1]
        if ref['symmetry'] != symmetry:
            # TRANSLATORS: E.g. "... assume fcc crystal structure for Au"
            self.structure_warn.text = (_('Error: Reference values assume {} '
                                          'crystal structure for {}!').
                                        format(ref['symmetry'],
                                               self.element.symbol))
        else:
            if symmetry == 'fcc' or symmetry == 'bcc' or symmetry == 'diamond':
                self.lattice_a.value = ref['a']
            elif symmetry == 'hcp':
                self.lattice_a.value = ref['a']
                self.lattice_c.value = ref['a'] * ref['c/a']
        self.make()
    def structure_changed(self, *args):
        for surface in surfaces:
            if surface[0] == self.structure.value:
                if surface[2] == 'ortho':
                    self.orthogonal.var.set(True)
                    self.orthogonal.check['state'] = ['disabled']
                elif surface[2] == 'non-ortho':
                    self.orthogonal.var.set(False)
                    self.orthogonal.check['state'] = ['disabled']
                else:
                    self.orthogonal.check['state'] = ['normal']
                if surface[1] == _('hcp'):
                    self.lattice_c.active = True
                    self.lattice_c.value = round(self.lattice_a.value *
                                                 ((8.0 / 3.0) ** (0.5)), 3)
                else:
                    self.lattice_c.active = False
                    self.lattice_c.value = 'None'
        self.get_lattice()
    def make(self, *args):
        symbol = self.element.symbol
        self.atoms = None
        self.description.text = ''
        self.python = None
        self.x_warn.text = ''
        self.y_warn.text = ''
        if symbol is None:
            return None
        x = self.x.value
        y = self.y.value
        z = self.z.value
        size = (x, y, z)
        a = self.lattice_a.value
        c = self.lattice_c.value
        vacuum = self.vacuum.value
        if not self.vacuum_check.var.get():
            vacuum = None
        ortho = self.orthogonal.var.get()
        ortho_warn_even = _('Please enter an even value for orthogonal cell')
        struct = self.structure.value
        if struct == _('BCC(111)') and y % 2 != 0 and ortho:
            self.y_warn.text = ortho_warn_even
            return None
        if struct == _('BCC(110)') and y % 2 != 0 and ortho:
            self.y_warn.text = ortho_warn_even
            return None
        if struct == _('FCC(111)') and y % 2 != 0 and ortho:
            self.y_warn.text = ortho_warn_even
            return None
        if struct == _('FCC(211)') and x % 3 != 0 and ortho:
            self.x_warn.text = _('Please enter a value divisible by 3'
                                 ' for orthogonal cell')
            return None
        if struct == _('HCP(0001)') and y % 2 != 0 and ortho:
            self.y_warn.text = ortho_warn_even
            return None
        if struct == _('HCP(10-10)') and y % 2 != 0 and ortho:
            self.y_warn.text = ortho_warn_even
            return None
        for surface in surfaces:
            if surface[0] == struct:
                c_py = ""
                if surface[1] == _('hcp'):
                    self.atoms = surface[3](symbol, size, a, c, vacuum, ortho)
                    c_py = f"{c}, "
                else:
                    self.atoms = surface[3](symbol, size, a, vacuum, ortho)
                if vacuum is not None:
                    vacuumtext = _(' Vacuum: {} Å.').format(vacuum)
                else:
                    vacuumtext = ''
                natoms = len(self.atoms)
                label = ngettext(
                    # TRANSLATORS: e.g. "Au fcc100 surface with 2 atoms."
                    # or "Au fcc100 surface with 2 atoms. Vacuum: 5 Å."
                    '{symbol} {surf} surface with one atom.{vacuum}',
                    '{symbol} {surf} surface with {natoms} atoms.{vacuum}',
                    natoms).format(symbol=symbol,
                                   surf=surface[3].__name__,
                                   natoms=natoms,
                                   vacuum=vacuumtext)
                self.description.text = label
                return py_template.format(func=surface[3].__name__, a=a,
                                          c=c_py, symbol=symbol, size=size,
                                          ortho=ortho, vacuum=vacuum)
    def apply(self, *args):
        self.make()
        if self.atoms is not None:
            self.gui.new_atoms(self.atoms)
            return True
        else:
            ui.error(_('No valid atoms.'),
                     _('You have not (yet) specified a consistent '
                       'set of parameters.'))
            return False
    def ok(self, *args):
        if self.apply():
            self.win.close()
 |