1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
|
from math import cos, sin, sqrt
from os.path import basename
import numpy as np
from ase.calculators.calculator import PropertyNotImplementedError
from ase.data import atomic_numbers
from ase.data.colors import jmol_colors
from ase.geometry import complete_cell
from ase.gui.colors import ColorWindow
from ase.gui.i18n import ngettext
from ase.gui.render import Render
from ase.gui.repeat import Repeat
from ase.gui.rotate import Rotate
from ase.gui.utils import get_magmoms
from ase.utils import rotate
GREEN = '#74DF00'
PURPLE = '#AC58FA'
BLACKISH = '#151515'
def get_cell_coordinates(cell, shifted=False):
"""Get start and end points of lines segments used to draw cell."""
nn = []
for c in range(3):
v = cell[c]
d = sqrt(np.dot(v, v))
if d < 1e-12:
n = 0
else:
n = max(2, int(d / 0.3))
nn.append(n)
B1 = np.zeros((2, 2, sum(nn), 3))
B2 = np.zeros((2, 2, sum(nn), 3))
n1 = 0
for c, n in enumerate(nn):
n2 = n1 + n
h = 1.0 / (2 * n - 1)
R = np.arange(n) * (2 * h)
for i, j in [(0, 0), (0, 1), (1, 0), (1, 1)]:
B1[i, j, n1:n2, c] = R
B1[i, j, n1:n2, (c + 1) % 3] = i
B1[i, j, n1:n2, (c + 2) % 3] = j
B2[:, :, n1:n2] = B1[:, :, n1:n2]
B2[:, :, n1:n2, c] += h
n1 = n2
B1.shape = (-1, 3)
B2.shape = (-1, 3)
if shifted:
B1 -= 0.5
B2 -= 0.5
return B1, B2
def get_bonds(atoms, covalent_radii):
from ase.neighborlist import PrimitiveNeighborList
nl = PrimitiveNeighborList(
covalent_radii * 1.5,
skin=0.0,
self_interaction=False,
bothways=False,
)
nl.update(atoms.pbc, atoms.get_cell(complete=True), atoms.positions)
number_of_neighbors = sum(indices.size for indices in nl.neighbors)
number_of_pbc_neighbors = sum(
offsets.any(axis=1).sum() for offsets in nl.displacements
) # sum up all neighbors that have non-zero supercell offsets
nbonds = number_of_neighbors + number_of_pbc_neighbors
bonds = np.empty((nbonds, 5), int)
if nbonds == 0:
return bonds
n1 = 0
for a in range(len(atoms)):
indices, offsets = nl.get_neighbors(a)
n2 = n1 + len(indices)
bonds[n1:n2, 0] = a
bonds[n1:n2, 1] = indices
bonds[n1:n2, 2:] = offsets
n1 = n2
i = bonds[:n2, 2:].any(1)
pbcbonds = bonds[:n2][i]
bonds[n2:, 0] = pbcbonds[:, 1]
bonds[n2:, 1] = pbcbonds[:, 0]
bonds[n2:, 2:] = -pbcbonds[:, 2:]
return bonds
class View:
def __init__(self, rotations):
self.colormode = 'jmol' # The default colors
self.labels = None
self.axes = rotate(rotations)
self.configured = False
self.frame = None
# XXX
self.colormode = 'jmol'
self.colors = {
i: ('#{:02X}{:02X}{:02X}'.format(*(int(x * 255) for x in rgb)))
for i, rgb in enumerate(jmol_colors)
}
# scaling factors for vectors
self.force_vector_scale = self.config['force_vector_scale']
self.velocity_vector_scale = self.config['velocity_vector_scale']
# buttons
self.b1 = 1 # left
self.b3 = 3 # right
if self.config['swap_mouse']:
self.b1 = 3
self.b3 = 1
@property
def atoms(self):
return self.images[self.frame]
def set_frame(self, frame=None, focus=False):
if frame is None:
frame = self.frame
assert frame < len(self.images)
self.frame = frame
self.set_atoms(self.images[frame])
fname = self.images.filenames[frame]
if fname is None:
header = 'ase.gui'
else:
# fname is actually not necessarily the filename but may
# contain indexing like filename@0
header = basename(fname)
images_loaded_text = ngettext(
'one image loaded',
'{} images loaded',
len(self.images)
).format(len(self.images))
self.window.title = f'{header} — {images_loaded_text}'
if focus:
self.focus()
else:
self.draw()
def get_bonds(self, atoms):
# this method exists rather than just using the standalone function
# so that it can be overridden by external libraries
return get_bonds(atoms, self.get_covalent_radii(atoms))
def set_atoms(self, atoms):
natoms = len(atoms)
if self.showing_cell():
B1, B2 = get_cell_coordinates(atoms.cell,
self.config['shift_cell'])
else:
B1 = B2 = np.zeros((0, 3))
if self.showing_bonds():
atomscopy = atoms.copy()
atomscopy.cell *= self.images.repeat[:, np.newaxis]
bonds = self.get_bonds(atomscopy)
else:
bonds = np.empty((0, 5), int)
# X is all atomic coordinates, and starting points of vectors
# like bonds and cell segments.
# The reason to have them all in one big list is that we like to
# eventually rotate/sort it by Z-order when rendering.
# Also B are the end points of line segments.
self.X = np.empty((natoms + len(B1) + len(bonds), 3))
self.X_pos = self.X[:natoms]
self.X_pos[:] = atoms.positions
self.X_cell = self.X[natoms:natoms + len(B1)]
self.X_bonds = self.X[natoms + len(B1):]
cell = atoms.cell
ncellparts = len(B1)
nbonds = len(bonds)
self.X_cell[:] = np.dot(B1, cell)
self.B = np.empty((ncellparts + nbonds, 3))
self.B[:ncellparts] = np.dot(B2, cell)
if nbonds > 0:
P = atoms.positions
Af = self.images.repeat[:, np.newaxis] * cell
a = P[bonds[:, 0]]
b = P[bonds[:, 1]] + np.dot(bonds[:, 2:], Af) - a
d = (b**2).sum(1)**0.5
r = 0.65 * self.get_covalent_radii()
x0 = (r[bonds[:, 0]] / d).reshape((-1, 1))
x1 = (r[bonds[:, 1]] / d).reshape((-1, 1))
self.X_bonds[:] = a + b * x0
b *= 1.0 - x0 - x1
b[bonds[:, 2:].any(1)] *= 0.5
self.B[ncellparts:] = self.X_bonds + b
def showing_bonds(self):
return self.window['toggle-show-bonds']
def showing_cell(self):
return self.window['toggle-show-unit-cell']
def toggle_show_unit_cell(self, key=None):
self.set_frame()
def update_labels(self):
index = self.window['show-labels']
if index == 0:
self.labels = None
elif index == 1:
self.labels = list(range(len(self.atoms)))
elif index == 2:
self.labels = list(get_magmoms(self.atoms))
elif index == 4:
Q = self.atoms.get_initial_charges()
self.labels = [f'{q:.4g}' for q in Q]
else:
self.labels = self.atoms.get_chemical_symbols()
def show_labels(self):
self.update_labels()
self.draw()
def toggle_show_axes(self, key=None):
self.draw()
def toggle_show_bonds(self, key=None):
self.set_frame()
def toggle_show_velocities(self, key=None):
self.draw()
def get_forces(self):
if self.atoms.calc is not None:
try:
return self.atoms.get_forces()
except PropertyNotImplementedError:
pass
return np.zeros((len(self.atoms), 3))
def toggle_show_forces(self, key=None):
self.draw()
def hide_selected(self):
self.images.visible[self.images.selected] = False
self.draw()
def show_selected(self):
self.images.visible[self.images.selected] = True
self.draw()
def repeat_window(self, key=None):
return Repeat(self)
def rotate_window(self):
return Rotate(self)
def colors_window(self, key=None):
win = ColorWindow(self)
self.register_vulnerable(win)
return win
def focus(self, x=None):
cell = (self.window['toggle-show-unit-cell'] and
self.images[0].cell.any())
if (len(self.atoms) == 0 and not cell):
self.scale = 20.0
self.center = np.zeros(3)
self.draw()
return
# Get the min and max point of the projected atom positions
# including the covalent_radii used for drawing the atoms
P = np.dot(self.X, self.axes)
n = len(self.atoms)
covalent_radii = self.get_covalent_radii()
P[:n] -= covalent_radii[:, None]
P1 = P.min(0)
P[:n] += 2 * covalent_radii[:, None]
P2 = P.max(0)
self.center = np.dot(self.axes, (P1 + P2) / 2)
self.center += self.atoms.get_celldisp().reshape((3,)) / 2
# Add 30% of whitespace on each side of the atoms
S = 1.3 * (P2 - P1)
w, h = self.window.size
if S[0] * h < S[1] * w:
self.scale = h / S[1]
elif S[0] > 0.0001:
self.scale = w / S[0]
else:
self.scale = 1.0
self.draw()
def reset_view(self, menuitem):
self.axes = rotate('0.0x,0.0y,0.0z')
self.set_frame()
self.focus(self)
def set_view(self, key):
if key == 'Z':
self.axes = rotate('0.0x,0.0y,0.0z')
elif key == 'X':
self.axes = rotate('-90.0x,-90.0y,0.0z')
elif key == 'Y':
self.axes = rotate('90.0x,0.0y,90.0z')
elif key == 'Alt+Z':
self.axes = rotate('180.0x,0.0y,90.0z')
elif key == 'Alt+X':
self.axes = rotate('0.0x,90.0y,0.0z')
elif key == 'Alt+Y':
self.axes = rotate('-90.0x,0.0y,0.0z')
else:
if key == '3':
i, j = 0, 1
elif key == '1':
i, j = 1, 2
elif key == '2':
i, j = 2, 0
elif key == 'Alt+3':
i, j = 1, 0
elif key == 'Alt+1':
i, j = 2, 1
elif key == 'Alt+2':
i, j = 0, 2
A = complete_cell(self.atoms.cell)
x1 = A[i]
x2 = A[j]
norm = np.linalg.norm
x1 = x1 / norm(x1)
x2 = x2 - x1 * np.dot(x1, x2)
x2 /= norm(x2)
x3 = np.cross(x1, x2)
self.axes = np.array([x1, x2, x3]).T
self.set_frame()
def get_colors(self, rgb=False):
if rgb:
return [tuple(int(_rgb[i:i + 2], 16) / 255 for i in range(1, 7, 2))
for _rgb in self.get_colors()]
if self.colormode == 'jmol':
return [self.colors.get(Z, BLACKISH) for Z in self.atoms.numbers]
if self.colormode == 'neighbors':
return [self.colors.get(Z, BLACKISH)
for Z in self.get_color_scalars()]
colorscale, cmin, cmax = self.colormode_data
N = len(colorscale)
colorswhite = colorscale + ['#ffffff']
if cmin == cmax:
indices = [N // 2] * len(self.atoms)
else:
scalars = np.ma.array(self.get_color_scalars())
indices = np.clip(((scalars - cmin) / (cmax - cmin) * N +
0.5).astype(int),
0, N - 1).filled(N)
return [colorswhite[i] for i in indices]
def get_color_scalars(self, frame=None):
if self.colormode == 'tag':
return self.atoms.get_tags()
if self.colormode == 'force':
f = (self.get_forces()**2).sum(1)**0.5
return f * self.images.get_dynamic(self.atoms)
elif self.colormode == 'velocity':
return (self.atoms.get_velocities()**2).sum(1)**0.5
elif self.colormode == 'initial charge':
return self.atoms.get_initial_charges()
elif self.colormode == 'magmom':
return get_magmoms(self.atoms)
elif self.colormode == 'neighbors':
from ase.neighborlist import NeighborList
n = len(self.atoms)
nl = NeighborList(self.get_covalent_radii(self.atoms) * 1.5,
skin=0, self_interaction=False, bothways=True)
nl.update(self.atoms)
return [len(nl.get_neighbors(i)[0]) for i in range(n)]
else:
scalars = np.array(self.atoms.get_array(self.colormode),
dtype=float)
return np.ma.array(scalars, mask=np.isnan(scalars))
def get_covalent_radii(self, atoms=None):
if atoms is None:
atoms = self.atoms
return self.images.get_radii(atoms)
def draw(self, status=True):
self.window.clear()
axes = self.scale * self.axes * (1, -1, 1)
offset = np.dot(self.center, axes)
offset[:2] -= 0.5 * self.window.size
X = np.dot(self.X, axes) - offset
n = len(self.atoms)
# The indices enumerate drawable objects in z order:
self.indices = X[:, 2].argsort()
r = self.get_covalent_radii() * self.scale
if self.window['toggle-show-bonds']:
r *= 0.65
P = self.P = X[:n, :2]
A = (P - r[:, None]).round().astype(int)
X1 = X[n:, :2].round().astype(int)
X2 = (np.dot(self.B, axes) - offset).round().astype(int)
disp = (np.dot(self.atoms.get_celldisp().reshape((3,)),
axes)).round().astype(int)
d = (2 * r).round().astype(int)
vector_arrays = []
if self.window['toggle-show-velocities']:
# Scale ugly?
v = self.atoms.get_velocities()
if v is not None:
vector_arrays.append(v * 10.0 * self.velocity_vector_scale)
if self.window['toggle-show-forces']:
f = self.get_forces()
vector_arrays.append(f * self.force_vector_scale)
for array in vector_arrays:
array[:] = np.dot(array, axes) + X[:n]
colors = self.get_colors()
circle = self.window.circle
arc = self.window.arc
line = self.window.line
constrained = ~self.images.get_dynamic(self.atoms)
selected = self.images.selected
visible = self.images.visible
ncell = len(self.X_cell)
bond_linewidth = self.scale * 0.15
self.update_labels()
if self.arrowkey_mode == self.ARROWKEY_MOVE:
movecolor = GREEN
elif self.arrowkey_mode == self.ARROWKEY_ROTATE:
movecolor = PURPLE
for a in self.indices:
if a < n:
ra = d[a]
if visible[a]:
try:
kinds = self.atoms.arrays['spacegroup_kinds']
site_occ = self.atoms.info['occupancy'][str(kinds[a])]
# first an empty circle if a site is not fully occupied
if (np.sum([v for v in site_occ.values()])) < 1.0:
fill = '#ffffff'
circle(fill, selected[a],
A[a, 0], A[a, 1],
A[a, 0] + ra, A[a, 1] + ra)
start = 0
# start with the dominant species
for sym, occ in sorted(site_occ.items(),
key=lambda x: x[1],
reverse=True):
if np.round(occ, decimals=4) == 1.0:
circle(colors[a], selected[a],
A[a, 0], A[a, 1],
A[a, 0] + ra, A[a, 1] + ra)
else:
# jmol colors for the moment
extent = 360. * occ
arc(self.colors[atomic_numbers[sym]],
selected[a],
start, extent,
A[a, 0], A[a, 1],
A[a, 0] + ra, A[a, 1] + ra)
start += extent
except KeyError:
# legacy behavior
# Draw the atoms
if (self.moving and a < len(self.move_atoms_mask)
and self.move_atoms_mask[a]):
circle(movecolor, False,
A[a, 0] - 4, A[a, 1] - 4,
A[a, 0] + ra + 4, A[a, 1] + ra + 4)
circle(colors[a], selected[a],
A[a, 0], A[a, 1], A[a, 0] + ra, A[a, 1] + ra)
# Draw labels on the atoms
if self.labels is not None:
self.window.text(A[a, 0] + ra / 2,
A[a, 1] + ra / 2,
str(self.labels[a]))
# Draw cross on constrained atoms
if constrained[a]:
R1 = int(0.14644 * ra)
R2 = int(0.85355 * ra)
line((A[a, 0] + R1, A[a, 1] + R1,
A[a, 0] + R2, A[a, 1] + R2))
line((A[a, 0] + R2, A[a, 1] + R1,
A[a, 0] + R1, A[a, 1] + R2))
# Draw velocities and/or forces
for v in vector_arrays:
assert not np.isnan(v).any()
self.arrow((X[a, 0], X[a, 1], v[a, 0], v[a, 1]),
width=2)
else:
# Draw unit cell and/or bonds:
a -= n
if a < ncell:
line((X1[a, 0] + disp[0], X1[a, 1] + disp[1],
X2[a, 0] + disp[0], X2[a, 1] + disp[1]))
else:
line((X1[a, 0], X1[a, 1],
X2[a, 0], X2[a, 1]),
width=bond_linewidth)
if self.window['toggle-show-axes']:
self.draw_axes()
if len(self.images) > 1:
self.draw_frame_number()
self.window.update()
if status:
self.status(self.atoms)
def arrow(self, coords, width):
line = self.window.line
begin = np.array((coords[0], coords[1]))
end = np.array((coords[2], coords[3]))
line(coords, width)
vec = end - begin
length = np.sqrt((vec[:2]**2).sum())
length = min(length, 0.3 * self.scale)
angle = np.arctan2(end[1] - begin[1], end[0] - begin[0]) + np.pi
x1 = (end[0] + length * np.cos(angle - 0.3)).round().astype(int)
y1 = (end[1] + length * np.sin(angle - 0.3)).round().astype(int)
x2 = (end[0] + length * np.cos(angle + 0.3)).round().astype(int)
y2 = (end[1] + length * np.sin(angle + 0.3)).round().astype(int)
line((x1, y1, end[0], end[1]), width)
line((x2, y2, end[0], end[1]), width)
def draw_axes(self):
axes_length = 15
rgb = ['red', 'green', 'blue']
for i in self.axes[:, 2].argsort():
a = 20
b = self.window.size[1] - 20
c = int(self.axes[i][0] * axes_length + a)
d = int(-self.axes[i][1] * axes_length + b)
self.window.line((a, b, c, d))
self.window.text(c, d, 'XYZ'[i], color=rgb[i])
def draw_frame_number(self):
x, y = self.window.size
self.window.text(x, y, '{}'.format(self.frame),
anchor='SE')
def release(self, event):
if event.button in [4, 5]:
self.scroll_event(event)
return
if event.button != self.b1:
return
selected = self.images.selected
selected_ordered = self.images.selected_ordered
if event.time < self.t0 + 200: # 200 ms
d = self.P - self.xy
r = self.get_covalent_radii()
hit = np.less((d**2).sum(1), (self.scale * r)**2)
for a in self.indices[::-1]:
if a < len(self.atoms) and hit[a]:
if event.modifier == 'ctrl':
selected[a] = not selected[a]
if selected[a]:
selected_ordered += [a]
elif len(selected_ordered) > 0:
if selected_ordered[-1] == a:
selected_ordered = selected_ordered[:-1]
else:
selected_ordered = []
else:
selected[:] = False
selected[a] = True
selected_ordered = [a]
break
else:
selected[:] = False
selected_ordered = []
self.draw()
else:
A = (event.x, event.y)
C1 = np.minimum(A, self.xy)
C2 = np.maximum(A, self.xy)
hit = np.logical_and(self.P > C1, self.P < C2)
indices = np.compress(hit.prod(1), np.arange(len(hit)))
if event.modifier != 'ctrl':
selected[:] = False
selected[indices] = True
if (len(indices) == 1 and
indices[0] not in self.images.selected_ordered):
selected_ordered += [indices[0]]
elif len(indices) > 1:
selected_ordered = []
self.draw()
# XXX check bounds
natoms = len(self.atoms)
indices = np.arange(natoms)[self.images.selected[:natoms]]
if len(indices) != len(selected_ordered):
selected_ordered = []
self.images.selected_ordered = selected_ordered
def press(self, event):
self.button = event.button
self.xy = (event.x, event.y)
self.t0 = event.time
self.axes0 = self.axes
self.center0 = self.center
def move(self, event):
x = event.x
y = event.y
x0, y0 = self.xy
if self.button == self.b1:
x0 = int(round(x0))
y0 = int(round(y0))
self.draw()
self.window.canvas.create_rectangle((x, y, x0, y0))
return
if event.modifier == 'shift':
self.center = (self.center0 -
np.dot(self.axes, (x - x0, y0 - y, 0)) / self.scale)
else:
# Snap mode: the a-b angle and t should multipla of 15 degrees ???
a = x - x0
b = y0 - y
t = sqrt(a * a + b * b)
if t > 0:
a /= t
b /= t
else:
a = 1.0
b = 0.0
c = cos(0.01 * t)
s = -sin(0.01 * t)
rotation = np.array([(c * a * a + b * b, (c - 1) * b * a, s * a),
((c - 1) * a * b, c * b * b + a * a, s * b),
(-s * a, -s * b, c)])
self.axes = np.dot(self.axes0, rotation)
if len(self.atoms) > 0:
com = self.X_pos.mean(0)
else:
com = self.atoms.cell.mean(0)
self.center = com - np.dot(com - self.center0,
np.dot(self.axes0, self.axes.T))
self.draw(status=False)
def render_window(self):
return Render(self)
def resize(self, event):
w, h = self.window.size
self.scale *= (event.width * event.height / (w * h))**0.5
self.window.size[:] = [event.width, event.height]
self.draw()
|