File: elk.py

package info (click to toggle)
python-ase 3.24.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 15,448 kB
  • sloc: python: 144,945; xml: 2,728; makefile: 113; javascript: 47
file content (361 lines) | stat: -rw-r--r-- 11,935 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import collections
from pathlib import Path

import numpy as np

from ase import Atoms
from ase.units import Bohr, Hartree
from ase.utils import reader, writer

elk_parameters = {'swidth': Hartree}


@reader
def read_elk(fd):
    """Import ELK atoms definition.

    Reads unitcell, atom positions, magmoms from elk.in/GEOMETRY.OUT file.
    """

    lines = fd.readlines()

    scale = np.ones(4)  # unit cell scale
    positions = []
    cell = []
    symbols = []
    magmoms = []

    # find cell scale
    for n, line in enumerate(lines):
        if line.split() == []:
            continue
        if line.strip() == 'scale':
            scale[0] = float(lines[n + 1])
        elif line.startswith('scale'):
            scale[int(line.strip()[-1])] = float(lines[n + 1])
    for n, line in enumerate(lines):
        if line.split() == []:
            continue
        if line.startswith('avec'):
            cell = np.array(
                [[float(v) * scale[1] for v in lines[n + 1].split()],
                 [float(v) * scale[2] for v in lines[n + 2].split()],
                 [float(v) * scale[3] for v in lines[n + 3].split()]])
        if line.startswith('atoms'):
            lines1 = lines[n + 1:]  # start subsearch
            spfname = []
            natoms = []
            atpos = []
            bfcmt = []
            for n1, line1 in enumerate(lines1):
                if line1.split() == []:
                    continue
                if 'spfname' in line1:
                    spfnamenow = lines1[n1].split()[0]
                    spfname.append(spfnamenow)
                    natomsnow = int(lines1[n1 + 1].split()[0])
                    natoms.append(natomsnow)
                    atposnow = []
                    bfcmtnow = []
                    for line in lines1[n1 + 2:n1 + 2 + natomsnow]:
                        atposnow.append([float(v) for v in line.split()[0:3]])
                        if len(line.split()) == 6:  # bfcmt present
                            bfcmtnow.append(
                                [float(v) for v in line.split()[3:]])
                    atpos.append(atposnow)
                    bfcmt.append(bfcmtnow)
    # symbols, positions, magmoms based on ELK spfname, atpos, and bfcmt
    symbols = ''
    positions = []
    magmoms = []
    for n, s in enumerate(spfname):
        symbols += str(s[1:].split('.')[0]) * natoms[n]
        positions += atpos[n]  # assumes fractional coordinates
        if len(bfcmt[n]) > 0:
            # how to handle cases of magmoms being one or three dim array?
            magmoms += [m[-1] for m in bfcmt[n]]
    atoms = Atoms(symbols, scaled_positions=positions, cell=[1, 1, 1])
    if len(magmoms) > 0:
        atoms.set_initial_magnetic_moments(magmoms)
    # final cell scale
    cell = cell * scale[0] * Bohr

    atoms.set_cell(cell, scale_atoms=True)
    atoms.pbc = True
    return atoms


@writer
def write_elk_in(fd, atoms, parameters=None):
    if parameters is None:
        parameters = {}

    parameters = dict(parameters)
    species_path = parameters.pop('species_dir', None)

    if parameters.get('spinpol') is None:
        if atoms.get_initial_magnetic_moments().any():
            parameters['spinpol'] = True

    if 'xctype' in parameters:
        if 'xc' in parameters:
            raise RuntimeError("You can't use both 'xctype' and 'xc'!")

    if parameters.get('autokpt'):
        if 'kpts' in parameters:
            raise RuntimeError("You can't use both 'autokpt' and 'kpts'!")
        if 'ngridk' in parameters:
            raise RuntimeError(
                "You can't use both 'autokpt' and 'ngridk'!")
    if 'ngridk' in parameters:
        if 'kpts' in parameters:
            raise RuntimeError("You can't use both 'ngridk' and 'kpts'!")

    if parameters.get('autoswidth'):
        if 'smearing' in parameters:
            raise RuntimeError(
                "You can't use both 'autoswidth' and 'smearing'!")
        if 'swidth' in parameters:
            raise RuntimeError(
                "You can't use both 'autoswidth' and 'swidth'!")

    inp = {}
    inp.update(parameters)

    if 'xc' in parameters:
        xctype = {'LDA': 3,  # PW92
                  'PBE': 20,
                  'REVPBE': 21,
                  'PBESOL': 22,
                  'WC06': 26,
                  'AM05': 30,
                  'mBJLDA': (100, 208, 12)}[parameters['xc']]
        inp['xctype'] = xctype
        del inp['xc']

    if 'kpts' in parameters:
        # XXX should generalize kpts handling.
        from ase.calculators.calculator import kpts2mp
        mp = kpts2mp(atoms, parameters['kpts'])
        inp['ngridk'] = tuple(mp)
        vkloff = []  # is this below correct?
        for nk in mp:
            if nk % 2 == 0:  # shift kpoint away from gamma point
                vkloff.append(0.5)
            else:
                vkloff.append(0)
        inp['vkloff'] = vkloff
        del inp['kpts']

    if 'smearing' in parameters:
        name = parameters.smearing[0].lower()
        if name == 'methfessel-paxton':
            stype = parameters.smearing[2]
        else:
            stype = {'gaussian': 0,
                     'fermi-dirac': 3,
                     }[name]
        inp['stype'] = stype
        inp['swidth'] = parameters.smearing[1]
        del inp['smearing']

    # convert keys to ELK units
    for key, value in inp.items():
        if key in elk_parameters:
            inp[key] /= elk_parameters[key]

    # write all keys
    for key, value in inp.items():
        fd.write(f'{key}\n')
        if isinstance(value, bool):
            fd.write(f'.{("false", "true")[value]}.\n\n')
        elif isinstance(value, (int, float)):
            fd.write(f'{value}\n\n')
        else:
            fd.write('%s\n\n' % ' '.join([str(x) for x in value]))

    # cell
    fd.write('avec\n')
    for vec in atoms.cell:
        fd.write('%.14f %.14f %.14f\n' % tuple(vec / Bohr))
    fd.write('\n')

    # atoms
    species = {}
    symbols = []
    for a, (symbol, m) in enumerate(
        zip(atoms.get_chemical_symbols(),
            atoms.get_initial_magnetic_moments())):
        if symbol in species:
            species[symbol].append((a, m))
        else:
            species[symbol] = [(a, m)]
            symbols.append(symbol)
    fd.write('atoms\n%d\n' % len(species))
    # scaled = atoms.get_scaled_positions(wrap=False)
    scaled = np.linalg.solve(atoms.cell.T, atoms.positions.T).T
    for symbol in symbols:
        fd.write(f"'{symbol}.in' : spfname\n")
        fd.write('%d\n' % len(species[symbol]))
        for a, m in species[symbol]:
            fd.write('%.14f %.14f %.14f 0.0 0.0 %.14f\n' %
                     (tuple(scaled[a]) + (m,)))

    # if sppath is present in elk.in it overwrites species blocks!

    # Elk seems to concatenate path and filename in such a way
    # that we must put a / at the end:
    if species_path is not None:
        fd.write(f"sppath\n'{species_path}/'\n\n")


class ElkReader:
    def __init__(self, path):
        self.path = Path(path)

    def _read_everything(self):
        yield from self._read_energy()

        with (self.path / 'INFO.OUT').open() as fd:
            yield from parse_elk_info(fd)

        with (self.path / 'EIGVAL.OUT').open() as fd:
            yield from parse_elk_eigval(fd)

        with (self.path / 'KPOINTS.OUT').open() as fd:
            yield from parse_elk_kpoints(fd)

    def read_everything(self):
        dct = dict(self._read_everything())

        # The eigenvalue/occupation tables do not say whether there are
        # two spins, so we have to reshape them from 1 x K x SB to S x K x B:
        spinpol = dct.pop('spinpol')
        if spinpol:
            for name in 'eigenvalues', 'occupations':
                array = dct[name]
                _, nkpts, nbands_double = array.shape
                assert _ == 1
                assert nbands_double % 2 == 0
                nbands = nbands_double // 2
                newarray = np.empty((2, nkpts, nbands))
                newarray[0, :, :] = array[0, :, :nbands]
                newarray[1, :, :] = array[0, :, nbands:]
                if name == 'eigenvalues':
                    # Verify that eigenvalues are still sorted:
                    diffs = np.diff(newarray, axis=2)
                    assert all(diffs.flat[:] > 0)
                dct[name] = newarray
        return dct

    def _read_energy(self):
        txt = (self.path / 'TOTENERGY.OUT').read_text()
        tokens = txt.split()
        energy = float(tokens[-1]) * Hartree
        yield 'free_energy', energy
        yield 'energy', energy


def parse_elk_kpoints(fd):
    header = next(fd)
    lhs, rhs = header.split(':', 1)
    assert 'k-point, vkl, wkpt' in rhs, header
    nkpts = int(lhs.strip())

    kpts = np.empty((nkpts, 3))
    weights = np.empty(nkpts)

    for ikpt in range(nkpts):
        line = next(fd)
        tokens = line.split()
        kpts[ikpt] = np.array(tokens[1:4]).astype(float)
        weights[ikpt] = float(tokens[4])
    yield 'ibz_kpoints', kpts
    yield 'kpoint_weights', weights


def parse_elk_info(fd):
    dct = collections.defaultdict(list)
    fd = iter(fd)

    spinpol = None
    converged = False
    actually_did_not_converge = False
    # Legacy code kept track of both these things, which is strange.
    # Why could a file both claim to converge *and* not converge?

    # We loop over all lines and extract also data that occurs
    # multiple times (e.g. in multiple SCF steps)
    for line in fd:
        # "name of quantity  :   1 2 3"
        tokens = line.split(':', 1)
        if len(tokens) == 2:
            lhs, rhs = tokens
            dct[lhs.strip()].append(rhs.strip())

        elif line.startswith('Convergence targets achieved'):
            converged = True
        elif 'reached self-consistent loops maximum' in line.lower():
            actually_did_not_converge = True

        if 'Spin treatment' in line:
            # (Somewhat brittle doing multi-line stuff here.)
            line = next(fd)
            spinpol = line.strip() == 'spin-polarised'

    yield 'converged', converged and not actually_did_not_converge
    if spinpol is None:
        raise RuntimeError('Could not determine spin treatment')
    yield 'spinpol', spinpol

    if 'Fermi' in dct:
        yield 'fermi_level', float(dct['Fermi'][-1]) * Hartree

    if 'total force' in dct:
        forces = []
        for line in dct['total force']:
            forces.append(line.split())
        yield 'forces', np.array(forces, float) * (Hartree / Bohr)


def parse_elk_eigval(fd):

    def match_int(line, word):
        number, colon, word1 = line.split()
        assert word1 == word
        assert colon == ':'
        return int(number)

    def skip_spaces(line=''):
        while not line.strip():
            line = next(fd)
        return line

    line = skip_spaces()
    nkpts = match_int(line, 'nkpt')  # 10 : nkpts
    line = next(fd)
    nbands = match_int(line, 'nstsv')  # 15 : nstsv

    eigenvalues = np.empty((nkpts, nbands))
    occupations = np.empty((nkpts, nbands))
    kpts = np.empty((nkpts, 3))

    for ikpt in range(nkpts):
        line = skip_spaces()
        tokens = line.split()
        assert tokens[-1] == 'vkl', tokens
        assert ikpt + 1 == int(tokens[0])
        kpts[ikpt] = np.array(tokens[1:4]).astype(float)

        line = next(fd)  # "(state, eigenvalue and occupancy below)"
        assert line.strip().startswith('(state,'), line
        for iband in range(nbands):
            line = next(fd)
            tokens = line.split()  # (band number, eigenval, occ)
            assert iband + 1 == int(tokens[0])
            eigenvalues[ikpt, iband] = float(tokens[1])
            occupations[ikpt, iband] = float(tokens[2])

    yield 'ibz_kpoints', kpts
    yield 'eigenvalues', eigenvalues[None] * Hartree
    yield 'occupations', occupations[None]