1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
|
import logging
import re
import warnings
from collections.abc import Iterable
from copy import deepcopy
import numpy as np
from ase import Atoms
from ase.calculators.calculator import Calculator, InputError
from ase.calculators.gaussian import Gaussian
from ase.calculators.singlepoint import SinglePointCalculator
from ase.data import atomic_masses_iupac2016, chemical_symbols
from ase.io import ParseError
from ase.io.zmatrix import parse_zmatrix
from ase.units import Bohr, Debye, Hartree
logger = logging.getLogger(__name__)
_link0_keys = [
'mem',
'chk',
'oldchk',
'schk',
'rwf',
'oldmatrix',
'oldrawmatrix',
'int',
'd2e',
'save',
'nosave',
'errorsave',
'cpu',
'nprocshared',
'gpucpu',
'lindaworkers',
'usessh',
'ssh',
'debuglinda',
]
_link0_special = [
'kjob',
'subst',
]
# Certain problematic methods do not provide well-defined potential energy
# surfaces, because these "composite" methods involve geometry optimization
# and/or vibrational frequency analysis. In addition, the "energy" calculated
# by these methods are typically ZPVE corrected and/or temperature dependent
# free energies.
_problem_methods = [
'cbs-4m', 'cbs-qb3', 'cbs-apno',
'g1', 'g2', 'g3', 'g4', 'g2mp2', 'g3mp2', 'g3b3', 'g3mp2b3', 'g4mp4',
'w1', 'w1u', 'w1bd', 'w1ro',
]
_xc_to_method = dict(
pbe='pbepbe',
pbe0='pbe1pbe',
hse06='hseh1pbe',
hse03='ohse2pbe',
lda='svwn', # gaussian "knows about" LSDA, but maybe not LDA.
tpss='tpsstpss',
revtpss='revtpssrevtpss',
)
_nuclear_prop_names = ['spin', 'zeff', 'qmom', 'nmagm', 'znuc',
'radnuclear', 'iso']
def _get_molecule_spec(atoms, nuclear_props):
''' Generate the molecule specification section to write
to the Gaussian input file, from the Atoms object and dict
of nuclear properties'''
molecule_spec = []
for i, atom in enumerate(atoms):
symbol_section = atom.symbol + '('
# Check whether any nuclear properties of the atom have been set,
# and if so, add them to the symbol section.
nuclear_props_set = False
for keyword, array in nuclear_props.items():
if array is not None and array[i] is not None:
string = keyword + '=' + str(array[i]) + ', '
symbol_section += string
nuclear_props_set = True
# Check whether the mass of the atom has been modified,
# and if so, add it to the symbol section:
mass_set = False
symbol = atom.symbol
expected_mass = atomic_masses_iupac2016[chemical_symbols.index(
symbol)]
if expected_mass != atoms[i].mass:
mass_set = True
string = 'iso' + '=' + str(atoms[i].mass)
symbol_section += string
if nuclear_props_set or mass_set:
symbol_section = symbol_section.strip(', ')
symbol_section += ')'
else:
symbol_section = symbol_section.strip('(')
# Then attach the properties appropriately
# this formatting was chosen for backwards compatibility reasons, but
# it would probably be better to
# 1) Ensure proper spacing between entries with explicit spaces
# 2) Use fewer columns for the element
# 3) Use 'e' (scientific notation) instead of 'f' for positions
molecule_spec.append('{:<10s}{:20.10f}{:20.10f}{:20.10f}'.format(
symbol_section, *atom.position))
# unit cell vectors, in case of periodic boundary conditions
for ipbc, tv in zip(atoms.pbc, atoms.cell):
if ipbc:
molecule_spec.append('TV {:20.10f}{:20.10f}{:20.10f}'.format(*tv))
molecule_spec.append('')
return molecule_spec
def _format_output_type(output_type):
''' Given a letter: output_type, return
a string formatted for a gaussian input file'''
# Change output type to P if it has been set to T, because ASE
# does not support reading info from 'terse' output files.
if output_type is None or output_type == '' or 't' in output_type.lower():
output_type = 'P'
return f'#{output_type}'
def _check_problem_methods(method):
''' Check method string for problem methods and warn appropriately'''
if method.lower() in _problem_methods:
warnings.warn(
'The requested method, {}, is a composite method. Composite '
'methods do not have well-defined potential energy surfaces, '
'so the energies, forces, and other properties returned by '
'ASE may not be meaningful, or they may correspond to a '
'different geometry than the one provided. '
'Please use these methods with caution.'.format(method)
)
def _pop_link0_params(params):
'''Takes the params dict and returns a dict with the link0 keywords
removed, and a list containing the link0 keywords and options
to be written to the gaussian input file'''
params = deepcopy(params)
out = []
# Remove keywords from params, so they are not set again later in
# route section
for key in _link0_keys:
if key not in params:
continue
val = params.pop(key)
if not val or (isinstance(val, str) and key.lower() == val.lower()):
out.append(f'%{key}')
else:
out.append(f'%{key}={val}')
# These link0 keywords have a slightly different syntax
for key in _link0_special:
if key not in params:
continue
val = params.pop(key)
if not isinstance(val, str) and isinstance(val, Iterable):
val = ' '.join(val)
out.append(f'%{key} L{val}')
return params, out
def _format_method_basis(output_type, method, basis, fitting_basis):
output_string = ""
if basis and method and fitting_basis:
output_string = '{} {}/{}/{} ! ASE formatted method and basis'.format(
output_type, method, basis, fitting_basis)
elif basis and method:
output_string = '{} {}/{} ! ASE formatted method and basis'.format(
output_type, method, basis)
else:
output_string = f'{output_type}'
for value in [method, basis]:
if value is not None:
output_string += f' {value}'
return output_string
def _format_route_params(params):
'''Get keywords and values from the params dictionary and return
as a list of lines to add to the gaussian input file'''
out = []
for key, val in params.items():
# assume bare keyword if val is falsey, i.e. '', None, False, etc.
# also, for backwards compatibility: assume bare keyword if key and
# val are the same
if not val or (isinstance(val, str) and key.lower() == val.lower()):
out.append(key)
elif not isinstance(val, str) and isinstance(val, Iterable):
out.append('{}({})'.format(key, ','.join(val)))
else:
out.append(f'{key}({val})')
return out
def _format_addsec(addsec):
'''Format addsec string as a list of lines to be added to the gaussian
input file.'''
out = []
if addsec is not None:
out.append('')
if isinstance(addsec, str):
out.append(addsec)
elif isinstance(addsec, Iterable):
out += list(addsec)
return out
def _format_basis_set(basis, basisfile, basis_set):
'''Format either: the basis set filename (basisfile), the basis set file
contents (from reading basisfile), or the basis_set text as a list of
strings to be added to the gaussian input file.'''
out = []
# if basis='gen', set basisfile. Either give a path to a basisfile, or
# read in the provided file and paste it verbatim
if basisfile is not None:
if basisfile[0] == '@':
out.append(basisfile)
else:
with open(basisfile) as fd:
out.append(fd.read())
elif basis_set is not None:
out.append(basis_set)
else:
if basis is not None and basis.lower() == 'gen':
raise InputError('Please set basisfile or basis_set')
return out
def write_gaussian_in(fd, atoms, properties=['energy'],
method=None, basis=None, fitting_basis=None,
output_type='P', basisfile=None, basis_set=None,
xc=None, charge=None, mult=None, extra=None,
ioplist=None, addsec=None, spinlist=None,
zefflist=None, qmomlist=None, nmagmlist=None,
znuclist=None, radnuclearlist=None,
**params):
'''
Generates a Gaussian input file
Parameters
-----------
fd: file-like
where the Gaussian input file will be written
atoms: Atoms
Structure to write to the input file
properties: list
Properties to calculate
method: str
Level of theory to use, e.g. ``hf``, ``ccsd``, ``mp2``, or ``b3lyp``.
Overrides ``xc`` (see below).
xc: str
Level of theory to use. Translates several XC functionals from
their common name (e.g. ``PBE``) to their internal Gaussian name
(e.g. ``PBEPBE``).
basis: str
The basis set to use. If not provided, no basis set will be requested,
which usually results in ``STO-3G``. Maybe omitted if basisfile is set
(see below).
fitting_basis: str
The name of the fitting basis set to use.
output_type: str
Level of output to record in the Gaussian
output file - this may be ``N``- normal or ``P`` -
additional.
basisfile: str
The name of the basis file to use. If a value is provided, basis may
be omitted (it will be automatically set to 'gen')
basis_set: str
The basis set definition to use. This is an alternative
to basisfile, and would be the same as the contents
of such a file.
charge: int
The system charge. If not provided, it will be automatically
determined from the ``Atoms`` object’s initial_charges.
mult: int
The system multiplicity (``spin + 1``). If not provided, it will be
automatically determined from the ``Atoms`` object’s
``initial_magnetic_moments``.
extra: str
Extra lines to be included in the route section verbatim.
It should not be necessary to use this, but it is included for
backwards compatibility.
ioplist: list
A collection of IOPs definitions to be included in the route line.
addsec: str
Text to be added after the molecular geometry specification, e.g. for
defining masses with ``freq=ReadIso``.
spinlist: list
A list of nuclear spins to be added into the nuclear
propeties section of the molecule specification.
zefflist: list
A list of effective charges to be added into the nuclear
propeties section of the molecule specification.
qmomlist: list
A list of nuclear quadropole moments to be added into
the nuclear propeties section of the molecule
specification.
nmagmlist: list
A list of nuclear magnetic moments to be added into
the nuclear propeties section of the molecule
specification.
znuclist: list
A list of nuclear charges to be added into the nuclear
propeties section of the molecule specification.
radnuclearlist: list
A list of nuclear radii to be added into the nuclear
propeties section of the molecule specification.
params: dict
Contains any extra keywords and values that will be included in either
the link0 section or route section of the gaussian input file.
To be included in the link0 section, the keyword must be one of the
following: ``mem``, ``chk``, ``oldchk``, ``schk``, ``rwf``,
``oldmatrix``, ``oldrawmatrix``, ``int``, ``d2e``, ``save``,
``nosave``, ``errorsave``, ``cpu``, ``nprocshared``, ``gpucpu``,
``lindaworkers``, ``usessh``, ``ssh``, ``debuglinda``.
Any other keywords will be placed (along with their values) in the
route section.
'''
params = deepcopy(params)
if properties is None:
properties = ['energy']
output_type = _format_output_type(output_type)
# basis can be omitted if basisfile is provided
if basis is None:
if basisfile is not None or basis_set is not None:
basis = 'gen'
# determine method from xc if it is provided
if method is None:
if xc is not None:
method = _xc_to_method.get(xc.lower(), xc)
# If the user requests a problematic method, rather than raising an error
# or proceeding blindly, give the user a warning that the results parsed
# by ASE may not be meaningful.
if method is not None:
_check_problem_methods(method)
# determine charge from initial charges if not passed explicitly
if charge is None:
charge = atoms.get_initial_charges().sum()
# determine multiplicity from initial magnetic moments
# if not passed explicitly
if mult is None:
mult = atoms.get_initial_magnetic_moments().sum() + 1
# set up link0 arguments
out = []
params, link0_list = _pop_link0_params(params)
out.extend(link0_list)
# begin route line
# note: unlike in old calculator, each route keyword is put on its own
# line.
out.append(_format_method_basis(output_type, method, basis, fitting_basis))
# If the calculator's parameter dictionary contains an isolist, we ignore
# this - it is up to the user to attach this info as the atoms' masses
# if they wish for it to be used:
params.pop('isolist', None)
# Any params left will belong in the route section of the file:
out.extend(_format_route_params(params))
if ioplist is not None:
out.append('IOP(' + ', '.join(ioplist) + ')')
# raw list of explicit keywords for backwards compatibility
if extra is not None:
out.append(extra)
# Add 'force' iff the user requested forces, since Gaussian crashes when
# 'force' is combined with certain other keywords such as opt and irc.
if 'forces' in properties and 'force' not in params:
out.append('force')
# header, charge, and mult
out += ['', 'Gaussian input prepared by ASE', '',
f'{charge:.0f} {mult:.0f}']
# make dict of nuclear properties:
nuclear_props = {'spin': spinlist, 'zeff': zefflist, 'qmom': qmomlist,
'nmagm': nmagmlist, 'znuc': znuclist,
'radnuclear': radnuclearlist}
nuclear_props = {k: v for k, v in nuclear_props.items() if v is not None}
# atomic positions and nuclear properties:
molecule_spec = _get_molecule_spec(atoms, nuclear_props)
for line in molecule_spec:
out.append(line)
out.extend(_format_basis_set(basis, basisfile, basis_set))
out.extend(_format_addsec(addsec))
out += ['', '']
fd.write('\n'.join(out))
# Regexp for reading an input file:
_re_link0 = re.compile(r'^\s*%([^\=\)\(!]+)=?([^\=\)\(!]+)?(!.+)?')
# Link0 lines are in the format:
# '% keyword = value' or '% keyword'
# (with or without whitespaces)
_re_output_type = re.compile(r'^\s*#\s*([NPTnpt]?)\s*')
# The start of the route section begins with a '#', and then may
# be followed by the desired level of output in the output file: P, N or T.
_re_method_basis = re.compile(
r"\s*([\w-]+)\s*\/([^/=!]+)([\/]([^!]+))?\s*(!.+)?")
# Matches method, basis and optional fitting basis in the format:
# method/basis/fitting_basis ! comment
# They will appear in this format if the Gaussian file has been generated
# by ASE using a calculator with the basis and method keywords set.
_re_chgmult = re.compile(r'^(\s*[+-]?\d+(?:,\s*|\s+)[+-]?\d+\s*){1,}$')
# This is a bit more complex of a regex than we typically want, but it
# can be difficult to determine whether a line contains the charge and
# multiplicity, rather than just another route keyword. By making sure
# that the line contains exactly an even number of *integers*, separated by
# either a comma (and possibly whitespace) or some amount of whitespace, we
# can be more confident that we've actually found the charge and multiplicity.
# Note that in recent versions of Gaussian, the gjf file can contain fragments,
# where you can give a charge and multiplicity to each fragment. This pattern
# will allow ASE to read this line in for the charge and multiplicity, however
# the _get_charge_mult method will only input the first two integers that
# always gives the overall charge and multiplcity for the full chemical system.
# The charge and multiplicity of the fragments will be ignored in the
# _get_charge_mult method.
_re_nuclear_props = re.compile(r'\(([^\)]+)\)')
# Matches the nuclear properties, which are contained in parantheses.
# The following methods are used in GaussianConfiguration's
# parse_gaussian_input method:
def _get_link0_param(link0_match):
'''Gets link0 keyword and option from a re.Match and returns them
in a dictionary format'''
value = link0_match.group(2)
if value is not None:
value = value.strip()
else:
value = ''
return {link0_match.group(1).lower().strip(): value.lower()}
def _get_all_link0_params(link0_section):
''' Given a string link0_section which contains the link0
section of a gaussian input file, returns a dictionary of
keywords and values'''
parameters = {}
for line in link0_section:
link0_match = _re_link0.match(line)
link0_param = _get_link0_param(link0_match)
if link0_param is not None:
parameters.update(link0_param)
return parameters
def _convert_to_symbol(string):
'''Converts an input string into a format
that can be input to the 'symbol' parameter of an
ASE Atom object (can be a chemical symbol (str)
or an atomic number (int)).
This is achieved by either stripping any
integers from the string, or converting a string
containing an atomic number to integer type'''
symbol = _validate_symbol_string(string)
if symbol.isnumeric():
atomic_number = int(symbol)
symbol = chemical_symbols[atomic_number]
else:
match = re.match(r'([A-Za-z]+)', symbol)
symbol = match.group(1)
return symbol
def _validate_symbol_string(string):
if "-" in string:
raise ParseError("ERROR: Could not read the Gaussian input file, as"
" molecule specifications for molecular mechanics "
"calculations are not supported.")
return string
def _get_key_value_pairs(line):
'''Read line of a gaussian input file with keywords and options
separated according to the rules of the route section.
Parameters
----------
line (string)
A line of a gaussian input file.
Returns
---------
params (dict)
Contains the keywords and options found in the line.
'''
params = {}
line = line.strip(' #')
line = line.split('!')[0] # removes any comments
# First, get the keywords and options sepatated with
# parantheses:
match_iterator = re.finditer(r'\(([^\)]+)\)', line)
index_ranges = []
for match in match_iterator:
index_range = [match.start(0), match.end(0)]
options = match.group(1)
# keyword is last word in previous substring:
keyword_string = line[:match.start(0)]
keyword_match_iter = [k for k in re.finditer(
r'[^\,/\s]+', keyword_string) if k.group() != '=']
keyword = keyword_match_iter[-1].group().strip(' =')
index_range[0] = keyword_match_iter[-1].start()
params.update({keyword.lower(): options.lower()})
index_ranges.append(index_range)
# remove from the line the keywords and options that we have saved:
index_ranges.reverse()
for index_range in index_ranges:
start = index_range[0]
stop = index_range[1]
line = line[0: start:] + line[stop + 1::]
# Next, get the keywords and options separated with
# an equals sign, and those without an equals sign
# must be keywords without options:
# remove any whitespaces around '=':
line = re.sub(r'\s*=\s*', '=', line)
line = [x for x in re.split(r'[\s,\/]', line) if x != '']
for s in line:
if '=' in s:
s = s.split('=')
keyword = s.pop(0)
options = s.pop(0)
params.update({keyword.lower(): options.lower()})
else:
if len(s) > 0:
params.update({s.lower(): None})
return params
def _get_route_params(line):
'''Reads keywords and values from a line in
a Gaussian input file's route section,
and returns them as a dictionary'''
method_basis_match = _re_method_basis.match(line)
if method_basis_match:
params = {}
ase_gen_comment = '! ASE formatted method and basis'
if method_basis_match.group(5) == ase_gen_comment:
params['method'] = method_basis_match.group(1).strip().lower()
params['basis'] = method_basis_match.group(2).strip().lower()
if method_basis_match.group(4):
params['fitting_basis'] = method_basis_match.group(
4).strip().lower()
return params
return _get_key_value_pairs(line)
def _get_all_route_params(route_section):
''' Given a string: route_section which contains the route
section of a gaussian input file, returns a dictionary of
keywords and values'''
parameters = {}
for line in route_section:
output_type_match = _re_output_type.match(line)
if not parameters.get('output_type') and output_type_match:
line = line.strip(output_type_match.group(0))
parameters.update(
{'output_type': output_type_match.group(1).lower()})
# read route section
route_params = _get_route_params(line)
if route_params is not None:
parameters.update(route_params)
return parameters
def _get_charge_mult(chgmult_section):
'''return a dict with the charge and multiplicity from
a list chgmult_section that contains the charge and multiplicity
line, read from a gaussian input file'''
chgmult_match = _re_chgmult.match(str(chgmult_section))
try:
chgmult = chgmult_match.group(0).split()
return {'charge': int(chgmult[0]), 'mult': int(chgmult[1])}
except (IndexError, AttributeError):
raise ParseError("ERROR: Could not read the charge and "
"multiplicity from the Gaussian input "
"file. There must be an even number of "
"integers separated with whitespace or "
"a comma, where the first two integers "
"must be the overall charge and overall "
"multiplicity of the chemical system, "
"respectively.")
def _get_nuclear_props(line):
''' Reads any info in parantheses in the line and returns
a dictionary of the nuclear properties.'''
nuclear_props_match = _re_nuclear_props.search(line)
nuclear_props = {}
if nuclear_props_match:
nuclear_props = _get_key_value_pairs(nuclear_props_match.group(1))
updated_nuclear_props = {}
for key, value in nuclear_props.items():
if value.isnumeric():
value = int(value)
else:
value = float(value)
if key not in _nuclear_prop_names:
if "fragment" in key:
warnings.warn("Fragments are not "
"currently supported.")
warnings.warn("The following nuclear properties "
"could not be saved: {}".format(
{key: value}))
else:
updated_nuclear_props[key] = value
nuclear_props = updated_nuclear_props
for k in _nuclear_prop_names:
if k not in nuclear_props:
nuclear_props[k] = None
return nuclear_props
def _get_atoms_info(line):
'''Returns the symbol and position of an atom from a line
in the molecule specification section'''
nuclear_props_match = _re_nuclear_props.search(line)
if nuclear_props_match:
line = line.replace(nuclear_props_match.group(0), '')
tokens = line.split()
symbol = _convert_to_symbol(tokens[0])
pos = list(tokens[1:])
return symbol, pos
def _get_cartesian_atom_coords(symbol, pos):
'''Returns the coordinates: pos as a list of floats if they
are cartesian, and not in z-matrix format'''
if len(pos) < 3 or (pos[0] == '0' and symbol != 'TV'):
# In this case, we have a z-matrix definition, so
# no cartesian coords.
return None
elif len(pos) > 3:
raise ParseError("ERROR: Gaussian input file could "
"not be read as freeze codes are not"
" supported. If using cartesian "
"coordinates, these must be "
"given as 3 numbers separated "
"by whitespace.")
else:
try:
return list(map(float, pos))
except ValueError:
raise ParseError(
"ERROR: Molecule specification in"
"Gaussian input file could not be read")
def _get_zmatrix_line(line):
''' Converts line into the format needed for it to
be added to the z-matrix contents '''
line_list = line.split()
if len(line_list) == 8 and line_list[7] == '1':
raise ParseError(
"ERROR: Could not read the Gaussian input file"
", as the alternative Z-matrix format using "
"two bond angles instead of a bond angle and "
"a dihedral angle is not supported.")
return line.strip() + '\n'
def _read_zmatrix(zmatrix_contents, zmatrix_vars=None):
''' Reads a z-matrix (zmatrix_contents) using its list of variables
(zmatrix_vars), and returns atom positions and symbols '''
try:
atoms = parse_zmatrix(zmatrix_contents, defs=zmatrix_vars)
except (ValueError, AssertionError) as e:
raise ParseError("Failed to read Z-matrix from "
"Gaussian input file: ", e)
except KeyError as e:
raise ParseError("Failed to read Z-matrix from "
"Gaussian input file, as symbol: {}"
"could not be recognised. Please make "
"sure you use element symbols, not "
"atomic numbers in the element labels.".format(e))
positions = atoms.positions
symbols = atoms.get_chemical_symbols()
return positions, symbols
def _get_nuclear_props_for_all_atoms(nuclear_props):
''' Returns the nuclear properties for all atoms as a dictionary,
in the format needed for it to be added to the parameters dictionary.'''
params = {k + 'list': [] for k in _nuclear_prop_names}
for dictionary in nuclear_props:
for key, value in dictionary.items():
params[key + 'list'].append(value)
for key, array in params.items():
values_set = False
for value in array:
if value is not None:
values_set = True
if not values_set:
params[key] = None
return params
def _get_atoms_from_molspec(molspec_section):
''' Takes a string: molspec_section which contains the molecule
specification section of a gaussian input file, and returns an atoms
object that represents this.'''
# These will contain info that will be attached to the Atoms object:
symbols = []
positions = []
pbc = np.zeros(3, dtype=bool)
cell = np.zeros((3, 3))
npbc = 0
# Will contain a dictionary of nuclear properties for each atom,
# that will later be saved to the parameters dict:
nuclear_props = []
# Info relating to the z-matrix definition (if set)
zmatrix_type = False
zmatrix_contents = ""
zmatrix_var_section = False
zmatrix_vars = ""
for line in molspec_section:
# Remove any comments and replace '/' and ',' with whitespace,
# as these are equivalent:
line = line.split('!')[0].replace('/', ' ').replace(',', ' ')
if (line.split()):
if zmatrix_type:
# Save any variables set when defining the z-matrix:
if zmatrix_var_section:
zmatrix_vars += line.strip() + '\n'
continue
elif 'variables' in line.lower():
zmatrix_var_section = True
continue
elif 'constants' in line.lower():
zmatrix_var_section = True
warnings.warn("Constants in the optimisation are "
"not currently supported. Instead "
"setting constants as variables.")
continue
symbol, pos = _get_atoms_info(line)
current_nuclear_props = _get_nuclear_props(line)
if not zmatrix_type:
pos = _get_cartesian_atom_coords(symbol, pos)
if pos is None:
zmatrix_type = True
if symbol.upper() == 'TV' and pos is not None:
pbc[npbc] = True
cell[npbc] = pos
npbc += 1
else:
nuclear_props.append(current_nuclear_props)
if not zmatrix_type:
symbols.append(symbol)
positions.append(pos)
if zmatrix_type:
zmatrix_contents += _get_zmatrix_line(line)
# Now that we are past the molecule spec. section, we can read
# the entire z-matrix (if set):
if len(positions) == 0:
if zmatrix_type:
if zmatrix_vars == '':
zmatrix_vars = None
positions, symbols = _read_zmatrix(
zmatrix_contents, zmatrix_vars)
try:
atoms = Atoms(symbols, positions, pbc=pbc, cell=cell)
except (IndexError, ValueError, KeyError) as e:
raise ParseError("ERROR: Could not read the Gaussian input file, "
"due to a problem with the molecule "
"specification: {}".format(e))
nuclear_props = _get_nuclear_props_for_all_atoms(nuclear_props)
return atoms, nuclear_props
def _get_readiso_param(parameters):
''' Returns a tuple containing the frequency
keyword and its options, if the frequency keyword is
present in parameters and ReadIso is one of its options'''
freq_options = parameters.get('freq', None)
if freq_options:
freq_name = 'freq'
else:
freq_options = parameters.get('frequency', None)
freq_name = 'frequency'
if freq_options is not None:
if ('readiso' or 'readisotopes') in freq_options:
return freq_name, freq_options
return None, None
def _get_readiso_info(line, parameters):
'''Reads the temperature, pressure and scale from the first line
of a ReadIso section of a Gaussian input file. Returns these in
a dictionary.'''
readiso_params = {}
if _get_readiso_param(parameters)[0] is not None:
# when count_iso is 0 we are in the line where
# temperature, pressure, [scale] is saved
line = line.replace(
'[', '').replace(']', '')
tokens = line.strip().split()
try:
readiso_params['temperature'] = tokens[0]
readiso_params['pressure'] = tokens[1]
readiso_params['scale'] = tokens[2]
except IndexError:
pass
if readiso_params != {}:
return readiso_params
def _delete_readiso_param(parameters):
'''Removes the readiso parameter from the parameters dict'''
parameters = deepcopy(parameters)
freq_name, freq_options = _get_readiso_param(parameters)
if freq_name is not None:
if 'readisotopes' in freq_options:
iso_name = 'readisotopes'
else:
iso_name = 'readiso'
freq_options = [v.group() for v in re.finditer(
r'[^\,/\s]+', freq_options)]
freq_options.remove(iso_name)
new_freq_options = ''
for v in freq_options:
new_freq_options += v + ' '
if new_freq_options == '':
new_freq_options = None
else:
new_freq_options = new_freq_options.strip()
parameters[freq_name] = new_freq_options
return parameters
def _update_readiso_params(parameters, symbols):
''' Deletes the ReadIso option from the route section as we
write out the masses in the nuclear properties section
instead of the ReadIso section.
Ensures the masses array is the same length as the
symbols array. This is necessary due to the way the
ReadIso section is defined:
The mass of each atom is listed on a separate line, in
order of appearance in the molecule spec. A blank line
indicates not to modify the mass for that atom.
But you do not have to leave blank lines equal to the
remaining atoms after you finsihed setting masses.
E.g. if you had 10 masses and only want to set the mass
for the first atom, you don't have to leave 9 blank lines
after it.
'''
parameters = _delete_readiso_param(parameters)
if parameters.get('isolist') is not None:
if len(parameters['isolist']) < len(symbols):
for _ in range(len(symbols) - len(parameters['isolist'])):
parameters['isolist'].append(None)
if all(m is None for m in parameters['isolist']):
parameters['isolist'] = None
return parameters
def _validate_params(parameters):
'''Checks whether all of the required parameters exist in the
parameters dict and whether it contains any unsupported settings
'''
# Check for unsupported settings
unsupported_settings = {
"z-matrix", "modredun", "modredundant", "addredundant", "addredun",
"readopt", "rdopt"}
for s in unsupported_settings:
for v in parameters.values():
if v is not None and s in str(v):
raise ParseError(
"ERROR: Could not read the Gaussian input file"
", as the option: {} is currently unsupported."
.format(s))
for k in list(parameters.keys()):
if "popt" in k:
parameters["opt"] = parameters.pop(k)
warnings.warn("The option {} is currently unsupported. "
"This has been replaced with {}."
.format("POpt", "opt"))
return
def _get_extra_section_params(extra_section, parameters, atoms):
''' Takes a list of strings: extra_section, which contains
the 'extra' lines in a gaussian input file. Also takes the parameters
that have been read so far, and the atoms that have been read from the
file.
Returns an updated version of the parameters dict, containing details from
this extra section. This may include the basis set definition or filename,
and/or the readiso section.'''
new_parameters = deepcopy(parameters)
# Will store the basis set definition (if set):
basis_set = ""
# This will indicate whether we have a readiso section:
readiso = _get_readiso_param(new_parameters)[0]
# This will indicate which line of the readiso section we are reading:
count_iso = 0
readiso_masses = []
for line in extra_section:
if line.split():
# check that the line isn't just a comment
if line.split()[0] == '!':
continue
line = line.strip().split('!')[0]
if len(line) > 0 and line[0] == '@':
# If the name of a basis file is specified, this line
# begins with a '@'
new_parameters['basisfile'] = line
elif readiso and count_iso < len(atoms.symbols) + 1:
# The ReadIso section has 1 more line than the number of
# symbols
if count_iso == 0 and line != '\n':
# The first line in the readiso section contains the
# temperature, pressure, scale. Here we save this:
readiso_info = _get_readiso_info(line, new_parameters)
if readiso_info is not None:
new_parameters.update(readiso_info)
# If the atom masses were set in the nuclear properties
# section, they will be overwritten by the ReadIso
# section
readiso_masses = []
count_iso += 1
elif count_iso > 0:
# The remaining lines in the ReadIso section are
# the masses of the atoms
try:
readiso_masses.append(float(line))
except ValueError:
readiso_masses.append(None)
count_iso += 1
else:
# If the rest of the file is not the ReadIso section,
# then it must be the definition of the basis set.
if new_parameters.get('basis', '') == 'gen' \
or 'gen' in new_parameters:
if line.strip() != '':
basis_set += line + '\n'
if readiso:
new_parameters['isolist'] = readiso_masses
new_parameters = _update_readiso_params(new_parameters, atoms.symbols)
# Saves the basis set definition to the parameters array if
# it has been set:
if basis_set != '':
new_parameters['basis_set'] = basis_set
new_parameters['basis'] = 'gen'
new_parameters.pop('gen', None)
return new_parameters
def _get_gaussian_in_sections(fd):
''' Reads a gaussian input file and returns
a dictionary of the sections of the file - each dictionary
value is a list of strings - each string is a line in that
section. '''
# These variables indicate which section of the
# input file is currently being read:
route_section = False
atoms_section = False
atoms_saved = False
# Here we will store the sections of the file in a dictionary,
# as lists of strings
gaussian_sections = {'link0': [], 'route': [],
'charge_mult': [], 'mol_spec': [], 'extra': []}
for line in fd:
line = line.strip(' ')
link0_match = _re_link0.match(line)
output_type_match = _re_output_type.match(line)
chgmult_match = _re_chgmult.match(line)
if link0_match:
gaussian_sections['link0'].append(line)
# The first blank line appears at the end of the route section
# and a blank line appears at the end of the atoms section:
elif line == '\n' and (route_section or atoms_section):
route_section = False
atoms_section = False
elif output_type_match or route_section:
route_section = True
gaussian_sections['route'].append(line)
elif chgmult_match:
gaussian_sections['charge_mult'] = line
# After the charge and multiplicty have been set, the
# molecule specification section of the input file begins:
atoms_section = True
elif atoms_section:
gaussian_sections['mol_spec'].append(line)
atoms_saved = True
elif atoms_saved:
# Next we read the other sections below the molecule spec.
# This may include the ReadIso section and the basis set
# definition or filename
gaussian_sections['extra'].append(line)
return gaussian_sections
class GaussianConfiguration:
def __init__(self, atoms, parameters):
self.atoms = atoms.copy()
self.parameters = deepcopy(parameters)
def get_atoms(self):
return self.atoms
def get_parameters(self):
return self.parameters
def get_calculator(self):
# Explicitly set parameters that must for security reasons not be
# taken from file:
calc = Gaussian(atoms=self.atoms, command=None, restart=None,
ignore_bad_restart_file=Calculator._deprecated,
label='Gaussian', directory='.', **self.parameters)
return calc
@staticmethod
def parse_gaussian_input(fd):
'''Reads a gaussian input file into an atoms object and
parameters dictionary.
Parameters
----------
fd: file-like
Contains the contents of a gaussian input file
Returns
---------
GaussianConfiguration
Contains an atoms object created using the structural
information from the input file.
Contains a parameters dictionary, which stores any
keywords and options found in the link-0 and route
sections of the input file.
'''
# The parameters dict to attach to the calculator
parameters = {}
file_sections = _get_gaussian_in_sections(fd)
# Update the parameters dictionary with the keywords and values
# from each section of the input file:
parameters.update(_get_all_link0_params(file_sections['link0']))
parameters.update(_get_all_route_params(file_sections['route']))
parameters.update(_get_charge_mult(file_sections['charge_mult']))
atoms, nuclear_props = _get_atoms_from_molspec(
file_sections['mol_spec'])
parameters.update(nuclear_props)
parameters.update(_get_extra_section_params(
file_sections['extra'], parameters, atoms))
_validate_params(parameters)
return GaussianConfiguration(atoms, parameters)
def read_gaussian_in(fd, attach_calculator=False):
'''
Reads a gaussian input file and returns an Atoms object.
Parameters
----------
fd: file-like
Contains the contents of a gaussian input file
attach_calculator: bool
When set to ``True``, a Gaussian calculator will be
attached to the Atoms object which is returned.
This will mean that additional information is read
from the input file (see below for details).
Returns
----------
Atoms
An Atoms object containing the following information that has been
read from the input file: symbols, positions, cell.
Notes
----------
Gaussian input files can be read where the atoms' locations are set with
cartesian coordinates or as a z-matrix. Variables may be used in the
z-matrix definition, but currently setting constants for constraining
a geometry optimisation is not supported. Note that the `alternative`
z-matrix definition where two bond angles are set instead of a bond angle
and a dihedral angle is not currently supported.
If the parameter ``attach_calculator`` is set to ``True``, then the Atoms
object is returned with a Gaussian calculator attached.
This Gaussian calculator will contain a parameters dictionary which will
contain the Link 0 commands and the options and keywords set in the route
section of the Gaussian input file, as well as:
• The charge and multiplicity
• The selected level of output
• The method, basis set and (optional) fitting basis set.
• Basis file name/definition if set
• Nuclear properties
• Masses set in the nuclear properties section or in the ReadIsotopes
section (if ``freq=ReadIso`` is set). These will be saved in an array
with keyword ``isolist``, in the parameters dictionary. For these to
actually be used in calculations and/or written out to input files,
the Atoms object's masses must be manually updated to these values
(this is not done automatically)
If the Gaussian input file has been generated by ASE's
``write_gaussian_in`` method, then the basis set, method and fitting
basis will be saved under the ``basis``, ``method`` and ``fitting_basis``
keywords in the parameters dictionary. Otherwise they are saved as
keywords in the parameters dict.
Currently this does not support reading of any other sections which would
be found below the molecule specification that have not been mentioned
here (such as the ModRedundant section).
'''
gaussian_input = GaussianConfiguration.parse_gaussian_input(fd)
atoms = gaussian_input.get_atoms()
if attach_calculator:
atoms.calc = gaussian_input.get_calculator()
return atoms
# In the interest of using the same RE for both atomic positions and forces,
# we make one of the columns optional. That's because atomic positions have
# 6 columns, while forces only has 5 columns. Otherwise they are very similar.
_re_atom = re.compile(
r'^\s*\S+\s+(\S+)\s+(?:\S+\s+)?(\S+)\s+(\S+)\s+(\S+)\s*$'
)
_re_forceblock = re.compile(r'^\s*Center\s+Atomic\s+Forces\s+\S+\s*$')
_re_l716 = re.compile(r'^\s*\(Enter .+l716.exe\)$')
def _compare_merge_configs(configs, new):
"""Append new to configs if it contains a new geometry or new data.
Gaussian sometimes repeats a geometry, for example at the end of an
optimization, or when a user requests vibrational frequency
analysis in the same calculation as a geometry optimization.
In those cases, rather than repeating the structure in the list of
returned structures, try to merge results if doing so doesn't change
any previously calculated values. If that's not possible, then create
a new "image" with the new results.
"""
if not configs:
configs.append(new)
return
old = configs[-1]
if old != new:
configs.append(new)
return
oldres = old.calc.results
newres = new.calc.results
common_keys = set(oldres).intersection(newres)
for key in common_keys:
if np.any(oldres[key] != newres[key]):
configs.append(new)
return
oldres.update(newres)
def _read_charges(fd):
fd.readline()
qs = []
ms = []
for line in fd:
if not line.strip()[0].isdigit():
break
qs.append(float(line.split()[2]))
if len(line.split()) > 3:
ms.append(float(line.split()[3]))
return {'charges': qs, 'magmoms': ms} if ms else {'charges': qs}
def read_gaussian_out(fd, index=-1):
"""Reads a gaussian output file and returns an Atoms object."""
configs = []
atoms = None
energy = None
results = {}
orientation = None # Orientation of the coordinates stored in atoms
for line in fd:
line = line.strip()
if line.startswith(r'1\1\GINC'):
# We've reached the "archive" block at the bottom, stop parsing
break
if (line == 'Input orientation:'
or line == 'Z-Matrix orientation:'
or line == "Standard orientation:"):
if atoms is not None:
# Add configuration to the currently-parsed list
# only after an energy or force has been parsed
# (we assume these are in the output file)
if energy is None:
continue
# "atoms" should store the first geometry encountered
# in the input file which is often the input orientation,
# which is the orientation for forces.
# If there are forces and the orientation of atoms is not
# the input coordinate system, warn the user
if orientation != "Input" and 'forces' in results:
logger.warning('Configuration geometry is not in the input'
f'orientation. It is {orientation}')
calc = SinglePointCalculator(atoms, energy=energy, **results)
atoms.calc = calc
_compare_merge_configs(configs, atoms)
atoms = None
orientation = line.split()[0] # Store the orientation
energy = None
results = {}
numbers = []
positions = []
pbc = np.zeros(3, dtype=bool)
cell = np.zeros((3, 3))
npbc = 0
# skip 4 irrelevant lines
for _ in range(4):
fd.readline()
while True:
match = _re_atom.match(fd.readline())
if match is None:
break
number = int(match.group(1))
pos = list(map(float, match.group(2, 3, 4)))
if number == -2:
pbc[npbc] = True
cell[npbc] = pos
npbc += 1
else:
numbers.append(max(number, 0))
positions.append(pos)
atoms = Atoms(numbers, positions, pbc=pbc, cell=cell)
elif (line.startswith('Energy=')
or line.startswith('SCF Done:')):
# Some semi-empirical methods (Huckel, MINDO3, etc.),
# or SCF methods (HF, DFT, etc.)
energy = float(line.split('=')[1].split()[0].replace('D', 'e'))
energy *= Hartree
elif (line.startswith('E2 =') or line.startswith('E3 =')
or line.startswith('E4(') or line.startswith('DEMP5 =')
or line.startswith('E2(')):
# MP{2,3,4,5} energy
# also some double hybrid calculations, like B2PLYP
energy = float(line.split('=')[-1].strip().replace('D', 'e'))
energy *= Hartree
elif line.startswith('Wavefunction amplitudes converged. E(Corr)'):
# "correlated method" energy, e.g. CCSD
energy = float(line.split('=')[-1].strip().replace('D', 'e'))
energy *= Hartree
elif line.startswith('CCSD(T)='):
# CCSD(T) energy
energy = float(line.split('=')[-1].strip().replace('D', 'e'))
energy *= Hartree
elif (
line.startswith('Mulliken charges')
or line.startswith('Lowdin Atomic Charges')
or line.startswith('Hirshfeld charges, spin densities,')
):
# Löwdin is printed after Mulliken and overwrites `charges`.
# Hirshfeld is printed after Mulliken and overwrites `charges`.
results.update(_read_charges(fd))
elif line.startswith('Dipole moment') and energy is not None:
# dipole moment in `l601.exe`, printed unless `Pop=None`
# Skipped if energy is not printed in the same section.
# This happens in the last geometry record when `opt` or `irc` is
# specified. In this case, the record is compared with the previous
# one in `_compare_merge_configs`, and there the dipole moment
# from `l601` conflicts with the previous record from `l716`.
line = fd.readline().strip()
dipole = np.array([float(_) for _ in line.split()[1:6:2]]) * Debye
results['dipole'] = dipole
elif _re_l716.match(line):
# Sometimes Gaussian will print "Rotating derivatives to
# standard orientation" after the matched line (which looks like
# "(Enter /opt/gaussian/g16/l716.exe)", though the exact path
# depends on where Gaussian is installed). We *skip* the dipole
# in this case, because it might be rotated relative to the input
# orientation (and also it is numerically different even if the
# standard orientation is the same as the input orientation).
line = fd.readline().strip()
if not line.startswith('Dipole'):
continue
dip = line.split('=')[1].replace('D', 'e')
tokens = dip.split()
dipole = []
# dipole elements can run together, depending on what method was
# used to calculate them. First see if there is a space between
# values.
if len(tokens) == 3:
dipole = list(map(float, tokens))
elif len(dip) % 3 == 0:
# next, check if the number of tokens is divisible by 3
nchars = len(dip) // 3
for i in range(3):
dipole.append(float(dip[nchars * i:nchars * (i + 1)]))
else:
# otherwise, just give up on trying to parse it.
dipole = None
continue
# this dipole moment is printed in atomic units, e-Bohr
# ASE uses e-Angstrom for dipole moments.
results['dipole'] = np.array(dipole) * Bohr
elif _re_forceblock.match(line):
# skip 2 irrelevant lines
fd.readline()
fd.readline()
forces = []
while True:
match = _re_atom.match(fd.readline())
if match is None:
break
forces.append(list(map(float, match.group(2, 3, 4))))
results['forces'] = np.array(forces) * Hartree / Bohr
if atoms is not None:
atoms.calc = SinglePointCalculator(atoms, energy=energy, **results)
_compare_merge_configs(configs, atoms)
return configs[index]
|