File: netcdftrajectory.py

package info (click to toggle)
python-ase 3.24.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 15,448 kB
  • sloc: python: 144,945; xml: 2,728; makefile: 113; javascript: 47
file content (657 lines) | stat: -rw-r--r-- 25,712 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
"""
netcdftrajectory - I/O trajectory files in the AMBER NetCDF convention

More information on the AMBER NetCDF conventions can be found at
http://ambermd.org/netcdf/. This module supports extensions to
these conventions, such as writing of additional fields and writing to
HDF5 (NetCDF-4) files.

A netCDF4-python is required by this module:

    netCDF4-python - https://github.com/Unidata/netcdf4-python

NetCDF files can be directly visualized using the libAtoms flavor of
AtomEye (http://www.libatoms.org/),
VMD (http://www.ks.uiuc.edu/Research/vmd/)
or Ovito (http://www.ovito.org/, starting with version 2.3).
"""


import collections
import os
import warnings
from functools import reduce

import numpy as np

import ase
from ase.data import atomic_masses
from ase.geometry import cellpar_to_cell


class NetCDFTrajectory:
    """
    Reads/writes Atoms objects into an AMBER-style .nc trajectory file.
    """

    # Default dimension names
    _frame_dim = 'frame'
    _spatial_dim = 'spatial'
    _atom_dim = 'atom'
    _cell_spatial_dim = 'cell_spatial'
    _cell_angular_dim = 'cell_angular'
    _label_dim = 'label'
    _Voigt_dim = 'Voigt'  # For stress/strain tensors

    # Default field names. If it is a list, check for any of these names upon
    # opening. Upon writing, use the first name.
    _spatial_var = 'spatial'
    _cell_spatial_var = 'cell_spatial'
    _cell_angular_var = 'cell_angular'
    _time_var = 'time'
    _numbers_var = ['atom_types', 'type', 'Z']
    _positions_var = 'coordinates'
    _velocities_var = 'velocities'
    _cell_origin_var = 'cell_origin'
    _cell_lengths_var = 'cell_lengths'
    _cell_angles_var = 'cell_angles'

    _default_vars = reduce(lambda x, y: x + y,
                           [_numbers_var, [_positions_var], [_velocities_var],
                            [_cell_origin_var], [_cell_lengths_var],
                            [_cell_angles_var]])

    def __init__(self, filename, mode='r', atoms=None, types_to_numbers=None,
                 double=True, netcdf_format='NETCDF3_CLASSIC', keep_open=True,
                 index_var='id', chunk_size=1000000):
        """
        A NetCDFTrajectory can be created in read, write or append mode.

        Parameters:

        filename:
            The name of the parameter file.  Should end in .nc.

        mode='r':
            The mode.

            'r' is read mode, the file should already exist, and no atoms
            argument should be specified.

            'w' is write mode. The atoms argument specifies the Atoms object
            to be written to the file, if not given it must instead be given
            as an argument to the write() method.

            'a' is append mode.  It acts a write mode, except that data is
            appended to a preexisting file.

        atoms=None:
            The Atoms object to be written in write or append mode.

        types_to_numbers=None:
            Dictionary or list for conversion of atom types to atomic numbers
            when reading a trajectory file.

        double=True:
            Create new variable in double precision.

        netcdf_format='NETCDF3_CLASSIC':
            Format string for the underlying NetCDF file format. Only relevant
            if a new file is created. More information can be found at
            https://www.unidata.ucar.edu/software/netcdf/docs/netcdf/File-Format.html

            'NETCDF3_CLASSIC' is the original binary format.

            'NETCDF3_64BIT' can be used to write larger files.

            'NETCDF4_CLASSIC' is HDF5 with some NetCDF limitations.

            'NETCDF4' is HDF5.

        keep_open=True:
            Keep the file open during consecutive read/write operations.
            Set to false if you experience data corruption. This will close the
            file after each read/write operation by comes with serious
            performance penalty.

        index_var='id':
            Name of variable containing the atom indices. Atoms are reordered
            by this index upon reading if this variable is present. Default
            value is for LAMMPS output. None switches atom indices off.

        chunk_size=1000000:
            Maximum size of consecutive number of records (along the 'atom')
            dimension read when reading from a NetCDF file. This is used to
            reduce the memory footprint of a read operation on very large files.
        """
        self.nc = None
        self.chunk_size = chunk_size

        self.numbers = None
        self.pre_observers = []   # Callback functions before write
        self.post_observers = []  # Callback functions after write are called

        self.has_header = False
        self._set_atoms(atoms)

        self.types_to_numbers = None
        if isinstance(types_to_numbers, list):
            types_to_numbers = {x: y for x, y in enumerate(types_to_numbers)}
        if types_to_numbers is not None:
            self.types_to_numbers = types_to_numbers

        self.index_var = index_var

        if self.index_var is not None:
            self._default_vars += [self.index_var]

        # 'l' should be a valid type according to the netcdf4-python
        # documentation, but does not appear to work.
        self.dtype_conv = {'l': 'i'}
        if not double:
            self.dtype_conv.update(dict(d='f'))

        self.extra_per_frame_vars = []
        self.extra_per_file_vars = []
        # per frame atts are global quantities, not quantities stored for each
        # atom
        self.extra_per_frame_atts = []

        self.mode = mode
        self.netcdf_format = netcdf_format

        if atoms:
            self.n_atoms = len(atoms)
        else:
            self.n_atoms = None

        self.filename = filename
        if keep_open is None:
            # Only netCDF4-python supports append to files
            self.keep_open = self.mode == 'r'
        else:
            self.keep_open = keep_open

    def __del__(self):
        self.close()

    def _open(self):
        """
        Opens the file.

        For internal use only.
        """
        import netCDF4
        if self.nc is not None:
            return
        if self.mode == 'a' and not os.path.exists(self.filename):
            self.mode = 'w'
        self.nc = netCDF4.Dataset(self.filename, self.mode,
                                  format=self.netcdf_format)

        self.frame = 0
        if self.mode == 'r' or self.mode == 'a':
            self._read_header()
            self.frame = self._len()

    def _set_atoms(self, atoms=None):
        """
        Associate an Atoms object with the trajectory.

        For internal use only.
        """
        if atoms is not None and not hasattr(atoms, 'get_positions'):
            raise TypeError('"atoms" argument is not an Atoms object.')
        self.atoms = atoms

    def _read_header(self):
        if not self.n_atoms:
            self.n_atoms = len(self.nc.dimensions[self._atom_dim])

        for name, var in self.nc.variables.items():
            # This can be unicode which confuses ASE
            name = str(name)
            # _default_vars is taken care of already
            if name not in self._default_vars:
                if len(var.dimensions) >= 2:
                    if var.dimensions[0] == self._frame_dim:
                        if var.dimensions[1] == self._atom_dim:
                            self.extra_per_frame_vars += [name]
                        else:
                            self.extra_per_frame_atts += [name]

                elif len(var.dimensions) == 1:
                    if var.dimensions[0] == self._atom_dim:
                        self.extra_per_file_vars += [name]
                    elif var.dimensions[0] == self._frame_dim:
                        self.extra_per_frame_atts += [name]

        self.has_header = True

    def write(self, atoms=None, frame=None, arrays=None, time=None):
        """
        Write the atoms to the file.

        If the atoms argument is not given, the atoms object specified
        when creating the trajectory object is used.
        """
        self._open()
        self._call_observers(self.pre_observers)
        if atoms is None:
            atoms = self.atoms

        if hasattr(atoms, 'interpolate'):
            # seems to be a NEB
            neb = atoms
            assert not neb.parallel
            try:
                neb.get_energies_and_forces(all=True)
            except AttributeError:
                pass
            for image in neb.images:
                self.write(image)
            return

        if not self.has_header:
            self._define_file_structure(atoms)
        else:
            if len(atoms) != self.n_atoms:
                raise ValueError('Bad number of atoms!')

        if frame is None:
            i = self.frame
        else:
            i = frame

        # Number can be per file variable
        numbers = self._get_variable(self._numbers_var)
        if numbers.dimensions[0] == self._frame_dim:
            numbers[i] = atoms.get_atomic_numbers()
        else:
            if np.any(numbers != atoms.get_atomic_numbers()):
                raise ValueError('Atomic numbers do not match!')
        self._get_variable(self._positions_var)[i] = atoms.get_positions()
        if atoms.has('momenta'):
            self._add_velocities()
            self._get_variable(self._velocities_var)[i] = \
                atoms.get_momenta() / atoms.get_masses().reshape(-1, 1)
        a, b, c, alpha, beta, gamma = atoms.cell.cellpar()
        if np.any(np.logical_not(atoms.pbc)):
            warnings.warn('Atoms have nonperiodic directions. Cell lengths in '
                          'these directions are lost and will be '
                          'shrink-wrapped when reading the NetCDF file.')
        cell_lengths = np.array([a, b, c]) * atoms.pbc
        self._get_variable(self._cell_lengths_var)[i] = cell_lengths
        self._get_variable(self._cell_angles_var)[i] = [alpha, beta, gamma]
        self._get_variable(self._cell_origin_var)[i] = \
            atoms.get_celldisp().reshape(3)
        if arrays is not None:
            for array in arrays:
                data = atoms.get_array(array)
                if array in self.extra_per_file_vars:
                    # This field exists but is per file data. Check that the
                    # data remains consistent.
                    if np.any(self._get_variable(array) != data):
                        raise ValueError('Trying to write Atoms object with '
                                         'incompatible data for the {} '
                                         'array.'.format(array))
                else:
                    self._add_array(atoms, array, data.dtype, data.shape)
                    self._get_variable(array)[i] = data
        if time is not None:
            self._add_time()
            self._get_variable(self._time_var)[i] = time

        self.sync()

        self._call_observers(self.post_observers)
        self.frame += 1
        self._close()

    def write_arrays(self, atoms, frame, arrays):
        self._open()
        self._call_observers(self.pre_observers)
        for array in arrays:
            data = atoms.get_array(array)
            if array in self.extra_per_file_vars:
                # This field exists but is per file data. Check that the
                # data remains consistent.
                if np.any(self._get_variable(array) != data):
                    raise ValueError('Trying to write Atoms object with '
                                     'incompatible data for the {} '
                                     'array.'.format(array))
            else:
                self._add_array(atoms, array, data.dtype, data.shape)
                self._get_variable(array)[frame] = data
        self._call_observers(self.post_observers)
        self._close()

    def _define_file_structure(self, atoms):
        self.nc.Conventions = 'AMBER'
        self.nc.ConventionVersion = '1.0'
        self.nc.program = 'ASE'
        self.nc.programVersion = ase.__version__
        self.nc.title = "MOL"

        if self._frame_dim not in self.nc.dimensions:
            self.nc.createDimension(self._frame_dim, None)
        if self._spatial_dim not in self.nc.dimensions:
            self.nc.createDimension(self._spatial_dim, 3)
        if self._atom_dim not in self.nc.dimensions:
            self.nc.createDimension(self._atom_dim, len(atoms))
        if self._cell_spatial_dim not in self.nc.dimensions:
            self.nc.createDimension(self._cell_spatial_dim, 3)
        if self._cell_angular_dim not in self.nc.dimensions:
            self.nc.createDimension(self._cell_angular_dim, 3)
        if self._label_dim not in self.nc.dimensions:
            self.nc.createDimension(self._label_dim, 5)

        # Self-describing variables from AMBER convention
        if not self._has_variable(self._spatial_var):
            self.nc.createVariable(self._spatial_var, 'S1',
                                   (self._spatial_dim,))
            self.nc.variables[self._spatial_var][:] = ['x', 'y', 'z']
        if not self._has_variable(self._cell_spatial_var):
            self.nc.createVariable(self._cell_spatial_dim, 'S1',
                                   (self._cell_spatial_dim,))
            self.nc.variables[self._cell_spatial_var][:] = ['a', 'b', 'c']
        if not self._has_variable(self._cell_angular_var):
            self.nc.createVariable(self._cell_angular_var, 'S1',
                                   (self._cell_angular_dim, self._label_dim,))
            self.nc.variables[self._cell_angular_var][0] = [x for x in 'alpha']
            self.nc.variables[self._cell_angular_var][1] = [x for x in 'beta ']
            self.nc.variables[self._cell_angular_var][2] = [x for x in 'gamma']

        if not self._has_variable(self._numbers_var):
            self.nc.createVariable(self._numbers_var[0], 'i',
                                   (self._frame_dim, self._atom_dim,))
        if not self._has_variable(self._positions_var):
            self.nc.createVariable(self._positions_var, 'f4',
                                   (self._frame_dim, self._atom_dim,
                                    self._spatial_dim))
            self.nc.variables[self._positions_var].units = 'Angstrom'
            self.nc.variables[self._positions_var].scale_factor = 1.
        if not self._has_variable(self._cell_lengths_var):
            self.nc.createVariable(self._cell_lengths_var, 'd',
                                   (self._frame_dim, self._cell_spatial_dim))
            self.nc.variables[self._cell_lengths_var].units = 'Angstrom'
            self.nc.variables[self._cell_lengths_var].scale_factor = 1.
        if not self._has_variable(self._cell_angles_var):
            self.nc.createVariable(self._cell_angles_var, 'd',
                                   (self._frame_dim, self._cell_angular_dim))
            self.nc.variables[self._cell_angles_var].units = 'degree'
        if not self._has_variable(self._cell_origin_var):
            self.nc.createVariable(self._cell_origin_var, 'd',
                                   (self._frame_dim, self._cell_spatial_dim))
            self.nc.variables[self._cell_origin_var].units = 'Angstrom'
            self.nc.variables[self._cell_origin_var].scale_factor = 1.

    def _add_time(self):
        if not self._has_variable(self._time_var):
            self.nc.createVariable(self._time_var, 'f8', (self._frame_dim,))

    def _add_velocities(self):
        if not self._has_variable(self._velocities_var):
            self.nc.createVariable(self._velocities_var, 'f4',
                                   (self._frame_dim, self._atom_dim,
                                    self._spatial_dim))
            self.nc.variables[self._positions_var].units = \
                'Angstrom/Femtosecond'
            self.nc.variables[self._positions_var].scale_factor = 1.

    def _add_array(self, atoms, array_name, type, shape):
        if not self._has_variable(array_name):
            dims = [self._frame_dim]
            for i in shape:
                if i == len(atoms):
                    dims += [self._atom_dim]
                elif i == 3:
                    dims += [self._spatial_dim]
                elif i == 6:
                    # This can only be stress/strain tensor in Voigt notation
                    if self._Voigt_dim not in self.nc.dimensions:
                        self.nc.createDimension(self._Voigt_dim, 6)
                    dims += [self._Voigt_dim]
                else:
                    raise TypeError("Don't know how to dump array of shape {}"
                                    " into NetCDF trajectory.".format(shape))
            if hasattr(type, 'char'):
                t = self.dtype_conv.get(type.char, type)
            else:
                t = type
            self.nc.createVariable(array_name, t, dims)

    def _get_variable(self, name, exc=True):
        if isinstance(name, list):
            for n in name:
                if n in self.nc.variables:
                    return self.nc.variables[n]
            if exc:
                raise RuntimeError(
                    'None of the variables {} was found in the '
                    'NetCDF trajectory.'.format(', '.join(name)))
        else:
            if name in self.nc.variables:
                return self.nc.variables[name]
            if exc:
                raise RuntimeError('Variables {} was found in the NetCDF '
                                   'trajectory.'.format(name))
        return None

    def _has_variable(self, name):
        if isinstance(name, list):
            for n in name:
                if n in self.nc.variables:
                    return True
            return False
        else:
            return name in self.nc.variables

    def _get_data(self, name, frame, index, exc=True):
        var = self._get_variable(name, exc=exc)
        if var is None:
            return None
        if var.dimensions[0] == self._frame_dim:
            data = np.zeros(var.shape[1:], dtype=var.dtype)
            s = var.shape[1]
            if s < self.chunk_size:
                data[index] = var[frame]
            else:
                # If this is a large data set, only read chunks from it to
                # reduce memory footprint of the NetCDFTrajectory reader.
                for i in range((s - 1) // self.chunk_size + 1):
                    sl = slice(i * self.chunk_size,
                               min((i + 1) * self.chunk_size, s))
                    data[index[sl]] = var[frame, sl]
        else:
            data = np.zeros(var.shape, dtype=var.dtype)
            s = var.shape[0]
            if s < self.chunk_size:
                data[index] = var[...]
            else:
                # If this is a large data set, only read chunks from it to
                # reduce memory footprint of the NetCDFTrajectory reader.
                for i in range((s - 1) // self.chunk_size + 1):
                    sl = slice(i * self.chunk_size,
                               min((i + 1) * self.chunk_size, s))
                    data[index[sl]] = var[sl]
        return data

    def __enter__(self):
        return self

    def __exit__(self, *args):
        self.close()

    def close(self):
        """Close the trajectory file."""
        if self.nc is not None:
            self.nc.close()
            self.nc = None

    def _close(self):
        if not self.keep_open:
            self.close()
            if self.mode == 'w':
                self.mode = 'a'

    def sync(self):
        self.nc.sync()

    def __getitem__(self, i=-1):
        self._open()

        if isinstance(i, slice):
            return [self[j] for j in range(*i.indices(self._len()))]

        N = self._len()
        if 0 <= i < N:
            # Non-periodic boundaries have cell_length == 0.0
            cell_lengths = \
                np.array(self.nc.variables[self._cell_lengths_var][i][:])
            pbc = np.abs(cell_lengths > 1e-6)

            # Do we have a cell origin?
            if self._has_variable(self._cell_origin_var):
                origin = np.array(
                    self.nc.variables[self._cell_origin_var][i][:])
            else:
                origin = np.zeros([3], dtype=float)

            # Do we have an index variable?
            if (self.index_var is not None and
                    self._has_variable(self.index_var)):
                index = np.array(self.nc.variables[self.index_var][i][:])
                # The index variable can be non-consecutive, we here construct
                # a consecutive one.
                consecutive_index = np.zeros_like(index)
                consecutive_index[np.argsort(index)] = np.arange(self.n_atoms)
            else:
                consecutive_index = np.arange(self.n_atoms)

            # Read element numbers
            self.numbers = self._get_data(self._numbers_var, i,
                                          consecutive_index, exc=False)
            if self.numbers is None:
                self.numbers = np.ones(self.n_atoms, dtype=int)
            if self.types_to_numbers is not None:
                d = set(self.numbers).difference(self.types_to_numbers.keys())
                if len(d) > 0:
                    self.types_to_numbers.update({num: num for num in d})
                func = np.vectorize(self.types_to_numbers.get)
                self.numbers = func(self.numbers)
            self.masses = atomic_masses[self.numbers]

            # Read positions
            positions = self._get_data(self._positions_var, i,
                                       consecutive_index)

            # Determine cell size for non-periodic directions from shrink
            # wrapped cell.
            for dim in np.arange(3)[np.logical_not(pbc)]:
                origin[dim] = positions[:, dim].min()
                cell_lengths[dim] = positions[:, dim].max() - origin[dim]

            # Construct cell shape from cell lengths and angles
            cell = cellpar_to_cell(
                list(cell_lengths) +
                list(self.nc.variables[self._cell_angles_var][i])
            )

            # Compute momenta from velocities (if present)
            momenta = self._get_data(self._velocities_var, i,
                                     consecutive_index, exc=False)
            if momenta is not None:
                momenta *= self.masses.reshape(-1, 1)

            info = {
                name: np.array(self.nc.variables[name][i])
                for name in self.extra_per_frame_atts
            }
            # Create atoms object
            atoms = ase.Atoms(
                positions=positions,
                numbers=self.numbers,
                cell=cell,
                celldisp=origin,
                momenta=momenta,
                masses=self.masses,
                pbc=pbc,
                info=info
            )

            # Attach additional arrays found in the NetCDF file
            for name in self.extra_per_frame_vars:
                atoms.set_array(name, self._get_data(name, i,
                                                     consecutive_index))
            for name in self.extra_per_file_vars:
                atoms.set_array(name, self._get_data(name, i,
                                                     consecutive_index))
            self._close()
            return atoms

        i = N + i
        if i < 0 or i >= N:
            self._close()
            raise IndexError('Trajectory index out of range.')
        return self[i]

    def _len(self):
        if self._frame_dim in self.nc.dimensions:
            return int(self._get_variable(self._positions_var).shape[0])
        else:
            return 0

    def __len__(self):
        self._open()
        n_frames = self._len()
        self._close()
        return n_frames

    def pre_write_attach(self, function, interval=1, *args, **kwargs):
        """
        Attach a function to be called before writing begins.

        function: The function or callable object to be called.

        interval: How often the function is called.  Default: every time (1).

        All other arguments are stored, and passed to the function.
        """
        if not isinstance(function, collections.abc.Callable):
            raise ValueError('Callback object must be callable.')
        self.pre_observers.append((function, interval, args, kwargs))

    def post_write_attach(self, function, interval=1, *args, **kwargs):
        """
        Attach a function to be called after writing ends.

        function: The function or callable object to be called.

        interval: How often the function is called.  Default: every time (1).

        All other arguments are stored, and passed to the function.
        """
        if not isinstance(function, collections.abc.Callable):
            raise ValueError('Callback object must be callable.')
        self.post_observers.append((function, interval, args, kwargs))

    def _call_observers(self, obs):
        """Call pre/post write observers."""
        for function, interval, args, kwargs in obs:
            if self.write_counter % interval == 0:
                function(*args, **kwargs)


def read_netcdftrajectory(filename, index=-1):
    with NetCDFTrajectory(filename, mode='r') as traj:
        return traj[index]


def write_netcdftrajectory(filename, images):
    if hasattr(images, 'get_positions'):
        images = [images]

    with NetCDFTrajectory(filename, mode='w') as traj:
        for atoms in images:
            traj.write(atoms)