1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
|
import time
import numpy as np
from ase.atom import Atom
from ase.atoms import Atoms
from ase.calculators.lammpsrun import Prism
from ase.data import atomic_masses, chemical_symbols
from ase.io import read
from ase.neighborlist import NeighborList
def twochar(name):
if len(name) > 1:
return name[:2]
else:
return name + ' '
class BondData:
def __init__(self, name_value_hash):
self.nvh = name_value_hash
def name_value(self, aname, bname):
name1 = twochar(aname) + '-' + twochar(bname)
name2 = twochar(bname) + '-' + twochar(aname)
if name1 in self.nvh:
return name1, self.nvh[name1]
if name2 in self.nvh:
return name2, self.nvh[name2]
return None, None
def value(self, aname, bname):
return self.name_value(aname, bname)[1]
class CutoffList(BondData):
def max(self):
return max(self.nvh.values())
class AnglesData:
def __init__(self, name_value_hash):
self.nvh = name_value_hash
def name_value(self, aname, bname, cname):
for name in [
(twochar(aname) + '-' + twochar(bname) + '-' + twochar(cname)),
(twochar(cname) + '-' + twochar(bname) + '-' + twochar(aname))]:
if name in self.nvh:
return name, self.nvh[name]
return None, None
class DihedralsData:
def __init__(self, name_value_hash):
self.nvh = name_value_hash
def name_value(self, aname, bname, cname, dname):
for name in [
(twochar(aname) + '-' + twochar(bname) + '-' +
twochar(cname) + '-' + twochar(dname)),
(twochar(dname) + '-' + twochar(cname) + '-' +
twochar(bname) + '-' + twochar(aname))]:
if name in self.nvh:
return name, self.nvh[name]
return None, None
class OPLSff:
def __init__(self, fileobj=None, warnings=0):
self.warnings = warnings
self.data = {}
if fileobj is not None:
self.read(fileobj)
def read(self, fileobj, comments='#'):
def read_block(name, symlen, nvalues):
"""Read a data block.
name: name of the block to store in self.data
symlen: length of the symbol
nvalues: number of values expected
"""
if name not in self.data:
self.data[name] = {}
data = self.data[name]
def add_line():
line = fileobj.readline().strip()
if not len(line): # end of the block
return False
line = line.split('#')[0] # get rid of comments
if len(line) > symlen:
symbol = line[:symlen]
words = line[symlen:].split()
if len(words) >= nvalues:
if nvalues == 1:
data[symbol] = float(words[0])
else:
data[symbol] = [float(word)
for word in words[:nvalues]]
return True
while add_line():
pass
read_block('one', 2, 3)
read_block('bonds', 5, 2)
read_block('angles', 8, 2)
read_block('dihedrals', 11, 4)
read_block('cutoffs', 5, 1)
self.bonds = BondData(self.data['bonds'])
self.angles = AnglesData(self.data['angles'])
self.dihedrals = DihedralsData(self.data['dihedrals'])
self.cutoffs = CutoffList(self.data['cutoffs'])
def write_lammps(self, atoms, prefix='lammps'):
"""Write input for a LAMMPS calculation."""
self.prefix = prefix
if hasattr(atoms, 'connectivities'):
connectivities = atoms.connectivities
else:
btypes, blist = self.get_bonds(atoms)
atypes, alist = self.get_angles()
dtypes, dlist = self.get_dihedrals(alist, atypes)
connectivities = {
'bonds': blist,
'bond types': btypes,
'angles': alist,
'angle types': atypes,
'dihedrals': dlist,
'dihedral types': dtypes}
self.write_lammps_definitions(atoms, btypes, atypes, dtypes)
self.write_lammps_in()
self.write_lammps_atoms(atoms, connectivities)
def write_lammps_in(self):
with open(self.prefix + '_in', 'w') as fileobj:
self._write_lammps_in(fileobj)
def _write_lammps_in(self, fileobj):
fileobj.write("""# LAMMPS relaxation (written by ASE)
units metal
atom_style full
boundary p p p
#boundary p p f
""")
fileobj.write('read_data ' + self.prefix + '_atoms\n')
fileobj.write('include ' + self.prefix + '_opls\n')
fileobj.write("""
kspace_style pppm 1e-5
#kspace_modify slab 3.0
neighbor 1.0 bin
neigh_modify delay 0 every 1 check yes
thermo 1000
thermo_style custom step temp press cpu pxx pyy pzz pxy pxz pyz ke pe etotal vol lx ly lz atoms
dump 1 all xyz 1000 dump_relax.xyz
dump_modify 1 sort id
restart 100000 test_relax
min_style fire
minimize 1.0e-14 1.0e-5 100000 100000
""") # noqa: E501
def write_lammps_atoms(self, atoms, connectivities):
"""Write atoms input for LAMMPS"""
with open(self.prefix + '_atoms', 'w') as fileobj:
self._write_lammps_atoms(fileobj, atoms, connectivities)
def _write_lammps_atoms(self, fileobj, atoms, connectivities):
# header
fileobj.write(fileobj.name + ' (by ' + str(self.__class__) + ')\n\n')
fileobj.write(str(len(atoms)) + ' atoms\n')
fileobj.write(str(len(atoms.types)) + ' atom types\n')
blist = connectivities['bonds']
if len(blist):
btypes = connectivities['bond types']
fileobj.write(str(len(blist)) + ' bonds\n')
fileobj.write(str(len(btypes)) + ' bond types\n')
alist = connectivities['angles']
if len(alist):
atypes = connectivities['angle types']
fileobj.write(str(len(alist)) + ' angles\n')
fileobj.write(str(len(atypes)) + ' angle types\n')
dlist = connectivities['dihedrals']
if len(dlist):
dtypes = connectivities['dihedral types']
fileobj.write(str(len(dlist)) + ' dihedrals\n')
fileobj.write(str(len(dtypes)) + ' dihedral types\n')
# cell
p = Prism(atoms.get_cell())
xhi, yhi, zhi, xy, xz, yz = p.get_lammps_prism()
fileobj.write(f'\n0.0 {xhi} xlo xhi\n')
fileobj.write(f'0.0 {yhi} ylo yhi\n')
fileobj.write(f'0.0 {zhi} zlo zhi\n')
if p.is_skewed():
fileobj.write(f"{xy} {xz} {yz} xy xz yz\n")
# atoms
fileobj.write('\nAtoms\n\n')
tag = atoms.get_tags()
if atoms.has('molid'):
molid = atoms.get_array('molid')
else:
molid = [1] * len(atoms)
for i, r in enumerate(
p.vector_to_lammps(atoms.get_positions())):
atype = atoms.types[tag[i]]
if len(atype) < 2:
atype = atype + ' '
q = self.data['one'][atype][2]
fileobj.write('%6d %3d %3d %s %s %s %s' % ((i + 1, molid[i],
tag[i] + 1,
q) + tuple(r)))
fileobj.write(' # ' + atoms.types[tag[i]] + '\n')
# velocities
velocities = atoms.get_velocities()
if velocities is not None:
velocities = p.vector_to_lammps(atoms.get_velocities())
fileobj.write('\nVelocities\n\n')
for i, v in enumerate(velocities):
fileobj.write('%6d %g %g %g\n' %
(i + 1, v[0], v[1], v[2]))
# masses
fileobj.write('\nMasses\n\n')
for i, typ in enumerate(atoms.types):
cs = atoms.split_symbol(typ)[0]
fileobj.write('%6d %g # %s -> %s\n' %
(i + 1,
atomic_masses[chemical_symbols.index(cs)],
typ, cs))
# bonds
if blist:
fileobj.write('\nBonds\n\n')
for ib, bvals in enumerate(blist):
fileobj.write('%8d %6d %6d %6d ' %
(ib + 1, bvals[0] + 1, bvals[1] + 1,
bvals[2] + 1))
if bvals[0] in btypes:
fileobj.write('# ' + btypes[bvals[0]])
fileobj.write('\n')
# angles
if alist:
fileobj.write('\nAngles\n\n')
for ia, avals in enumerate(alist):
fileobj.write('%8d %6d %6d %6d %6d ' %
(ia + 1, avals[0] + 1,
avals[1] + 1, avals[2] + 1, avals[3] + 1))
if avals[0] in atypes:
fileobj.write('# ' + atypes[avals[0]])
fileobj.write('\n')
# dihedrals
if dlist:
fileobj.write('\nDihedrals\n\n')
for i, dvals in enumerate(dlist):
fileobj.write('%8d %6d %6d %6d %6d %6d ' %
(i + 1, dvals[0] + 1,
dvals[1] + 1, dvals[2] + 1,
dvals[3] + 1, dvals[4] + 1))
if dvals[0] in dtypes:
fileobj.write('# ' + dtypes[dvals[0]])
fileobj.write('\n')
def update_neighbor_list(self, atoms):
cut = 0.5 * max(self.data['cutoffs'].values())
self.nl = NeighborList([cut] * len(atoms), skin=0,
bothways=True, self_interaction=False)
self.nl.update(atoms)
self.atoms = atoms
def get_bonds(self, atoms):
"""Find bonds and return them and their types"""
cutoffs = CutoffList(self.data['cutoffs'])
self.update_neighbor_list(atoms)
types = atoms.get_types()
tags = atoms.get_tags()
cell = atoms.get_cell()
bond_list = []
bond_types = []
for i, atom in enumerate(atoms):
iname = types[tags[i]]
indices, offsets = self.nl.get_neighbors(i)
for j, offset in zip(indices, offsets):
if j <= i:
continue # do not double count
jname = types[tags[j]]
cut = cutoffs.value(iname, jname)
if cut is None:
if self.warnings > 1:
print(f'Warning: cutoff {iname}-{jname} not found')
continue # don't have it
dist = np.linalg.norm(atom.position - atoms[j].position -
np.dot(offset, cell))
if dist > cut:
continue # too far away
name, _val = self.bonds.name_value(iname, jname)
if name is None:
if self.warnings:
print(f'Warning: potential {iname}-{jname} not found')
continue # don't have it
if name not in bond_types:
bond_types.append(name)
bond_list.append([bond_types.index(name), i, j])
return bond_types, bond_list
def get_angles(self, atoms=None):
cutoffs = CutoffList(self.data['cutoffs'])
if atoms is not None:
self.update_neighbor_list(atoms)
else:
atoms = self.atoms
types = atoms.get_types()
tags = atoms.get_tags()
cell = atoms.get_cell()
ang_list = []
ang_types = []
# center atom *-i-*
for i, atom in enumerate(atoms):
iname = types[tags[i]]
indicesi, offsetsi = self.nl.get_neighbors(i)
# search for first neighbor j-i-*
for j, offsetj in zip(indicesi, offsetsi):
jname = types[tags[j]]
cut = cutoffs.value(iname, jname)
if cut is None:
continue # don't have it
dist = np.linalg.norm(atom.position - atoms[j].position -
np.dot(offsetj, cell))
if dist > cut:
continue # too far away
# search for second neighbor j-i-k
for k, offsetk in zip(indicesi, offsetsi):
if k <= j:
continue # avoid double count
kname = types[tags[k]]
cut = cutoffs.value(iname, kname)
if cut is None:
continue # don't have it
dist = np.linalg.norm(atom.position -
np.dot(offsetk, cell) -
atoms[k].position)
if dist > cut:
continue # too far away
name, _val = self.angles.name_value(jname, iname,
kname)
if name is None:
if self.warnings > 1:
print(
f'Warning: angles {jname}-{iname}-{kname} not '
'found'
)
continue # don't have it
if name not in ang_types:
ang_types.append(name)
ang_list.append([ang_types.index(name), j, i, k])
return ang_types, ang_list
def get_dihedrals(self, ang_types, ang_list):
'Dihedrals derived from angles.'
cutoffs = CutoffList(self.data['cutoffs'])
atoms = self.atoms
types = atoms.get_types()
tags = atoms.get_tags()
cell = atoms.get_cell()
dih_list = []
dih_types = []
def append(name, i, j, k, L):
if name not in dih_types:
dih_types.append(name)
index = dih_types.index(name)
if (([index, i, j, k, L] not in dih_list) and
([index, L, k, j, i] not in dih_list)):
dih_list.append([index, i, j, k, L])
for angle in ang_types:
L, i, j, k = angle
iname = types[tags[i]]
jname = types[tags[j]]
kname = types[tags[k]]
# search for l-i-j-k
indicesi, offsetsi = self.nl.get_neighbors(i)
for L, offsetl in zip(indicesi, offsetsi):
if L == j:
continue # avoid double count
lname = types[tags[L]]
cut = cutoffs.value(iname, lname)
if cut is None:
continue # don't have it
dist = np.linalg.norm(atoms[i].position - atoms[L].position -
np.dot(offsetl, cell))
if dist > cut:
continue # too far away
name, _val = self.dihedrals.name_value(lname, iname,
jname, kname)
if name is None:
continue # don't have it
append(name, L, i, j, k)
# search for i-j-k-l
indicesk, offsetsk = self.nl.get_neighbors(k)
for L, offsetl in zip(indicesk, offsetsk):
if L == j:
continue # avoid double count
lname = types[tags[L]]
cut = cutoffs.value(kname, lname)
if cut is None:
continue # don't have it
dist = np.linalg.norm(atoms[k].position - atoms[L].position -
np.dot(offsetl, cell))
if dist > cut:
continue # too far away
name, _val = self.dihedrals.name_value(iname, jname,
kname, lname)
if name is None:
continue # don't have it
append(name, i, j, k, L)
return dih_types, dih_list
def write_lammps_definitions(self, atoms, btypes, atypes, dtypes):
"""Write force field definitions for LAMMPS."""
with open(self.prefix + '_opls', 'w') as fd:
self._write_lammps_definitions(fd, atoms, btypes, atypes, dtypes)
def _write_lammps_definitions(self, fileobj, atoms, btypes, atypes,
dtypes):
fileobj.write('# OPLS potential\n')
fileobj.write('# write_lammps' +
str(time.asctime(time.localtime(time.time()))))
# bonds
if len(btypes):
fileobj.write('\n# bonds\n')
fileobj.write('bond_style harmonic\n')
for ib, btype in enumerate(btypes):
fileobj.write('bond_coeff %6d' % (ib + 1))
for value in self.bonds.nvh[btype]:
fileobj.write(' ' + str(value))
fileobj.write(' # ' + btype + '\n')
# angles
if len(atypes):
fileobj.write('\n# angles\n')
fileobj.write('angle_style harmonic\n')
for ia, atype in enumerate(atypes):
fileobj.write('angle_coeff %6d' % (ia + 1))
for value in self.angles.nvh[atype]:
fileobj.write(' ' + str(value))
fileobj.write(' # ' + atype + '\n')
# dihedrals
if len(dtypes):
fileobj.write('\n# dihedrals\n')
fileobj.write('dihedral_style opls\n')
for i, dtype in enumerate(dtypes):
fileobj.write('dihedral_coeff %6d' % (i + 1))
for value in self.dihedrals.nvh[dtype]:
fileobj.write(' ' + str(value))
fileobj.write(' # ' + dtype + '\n')
# Lennard Jones settings
fileobj.write('\n# L-J parameters\n')
fileobj.write('pair_style lj/cut/coul/long 10.0 7.4' +
' # consider changing these parameters\n')
fileobj.write('special_bonds lj/coul 0.0 0.0 0.5\n')
data = self.data['one']
for ia, atype in enumerate(atoms.types):
if len(atype) < 2:
atype = atype + ' '
fileobj.write('pair_coeff ' + str(ia + 1) + ' ' + str(ia + 1))
for value in data[atype][:2]:
fileobj.write(' ' + str(value))
fileobj.write(' # ' + atype + '\n')
fileobj.write('pair_modify shift yes mix geometric\n')
# Charges
fileobj.write('\n# charges\n')
for ia, atype in enumerate(atoms.types):
if len(atype) < 2:
atype = atype + ' '
fileobj.write('set type ' + str(ia + 1))
fileobj.write(' charge ' + str(data[atype][2]))
fileobj.write(' # ' + atype + '\n')
class OPLSStructure(Atoms):
default_map = {
'BR': 'Br',
'Be': 'Be',
'C0': 'Ca',
'Li': 'Li',
'Mg': 'Mg',
'Al': 'Al',
'Ar': 'Ar'}
def __init__(self, filename=None, *args, **kwargs):
Atoms.__init__(self, *args, **kwargs)
if filename:
self.read_extended_xyz(filename)
else:
self.types = []
for atom in self:
if atom.symbol not in self.types:
self.types.append(atom.symbol)
atom.tag = self.types.index(atom.symbol)
def append(self, atom):
"""Append atom to end."""
self.extend(Atoms([atom]))
def read_extended_xyz(self, fileobj, map={}):
"""Read extended xyz file with labeled atoms."""
atoms = read(fileobj)
self.set_cell(atoms.get_cell())
self.set_pbc(atoms.get_pbc())
types = []
types_map = {}
for atom, type in zip(atoms, atoms.get_array('type')):
if type not in types:
types_map[type] = len(types)
types.append(type)
atom.tag = types_map[type]
self.append(atom)
self.types = types
# copy extra array info
for name, array in atoms.arrays.items():
if name not in self.arrays:
self.new_array(name, array)
def split_symbol(self, string, translate=default_map):
if string in translate:
return translate[string], string
if len(string) < 2:
return string, None
return string[0], string[1]
def get_types(self):
return self.types
def colored(self, elements):
res = Atoms()
res.set_cell(self.get_cell())
for atom in self:
elem = self.types[atom.tag]
if elem in elements:
elem = elements[elem]
res.append(Atom(elem, atom.position))
return res
def update_from_lammps_dump(self, fileobj, check=True):
atoms = read(fileobj, format='lammps-dump')
if len(atoms) != len(self):
raise RuntimeError('Structure in ' + str(fileobj) +
' has wrong length: %d != %d' %
(len(atoms), len(self)))
if check:
for a, b in zip(self, atoms):
# check that the atom types match
if a.tag + 1 != b.number:
raise RuntimeError('Atoms index %d are of different '
'type (%d != %d)'
% (a.index, a.tag + 1, b.number))
self.set_cell(atoms.get_cell())
self.set_positions(atoms.get_positions())
if atoms.get_velocities() is not None:
self.set_velocities(atoms.get_velocities())
# XXX what about energy and forces ???
def read_connectivities(self, fileobj, update_types=False):
"""Read positions, connectivities, etc.
update_types: update atom types from the masses
"""
lines = fileobj.readlines()
lines.pop(0)
def next_entry():
line = lines.pop(0).strip()
if len(line) > 0:
lines.insert(0, line)
def next_key():
while len(lines):
line = lines.pop(0).strip()
if len(line) > 0:
lines.pop(0)
return line
return None
next_entry()
header = {}
while True:
line = lines.pop(0).strip()
if len(line):
w = line.split()
if len(w) == 2:
header[w[1]] = int(w[0])
else:
header[w[1] + ' ' + w[2]] = int(w[0])
else:
break
while not lines.pop(0).startswith('Atoms'):
pass
lines.pop(0)
natoms = len(self)
positions = np.empty((natoms, 3))
for i in range(natoms):
w = lines.pop(0).split()
assert int(w[0]) == (i + 1)
positions[i] = np.array([float(w[4 + c]) for c in range(3)])
# print(w, positions[i])
key = next_key()
velocities = None
if key == 'Velocities':
velocities = np.empty((natoms, 3))
for i in range(natoms):
w = lines.pop(0).split()
assert int(w[0]) == (i + 1)
velocities[i] = np.array([float(w[1 + c]) for c in range(3)])
key = next_key()
if key == 'Masses':
ntypes = len(self.types)
masses = np.empty(ntypes)
for i in range(ntypes):
w = lines.pop(0).split()
assert int(w[0]) == (i + 1)
masses[i] = float(w[1])
if update_types:
# get the elements from the masses
# this ensures that we have the right elements
# even when reading from a lammps dump file
def newtype(element, types):
if len(element) > 1:
# can not extend, we are restricted to
# two characters
return element
count = 0
for type in types:
if type[0] == element:
count += 1
label = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'
return (element + label[count])
symbolmap = {}
typemap = {}
types = []
ams = atomic_masses[:]
ams[np.isnan(ams)] = 0
for i, mass in enumerate(masses):
m2 = (ams - mass)**2
symbolmap[self.types[i]] = chemical_symbols[m2.argmin()]
typemap[self.types[i]] = newtype(
chemical_symbols[m2.argmin()], types)
types.append(typemap[self.types[i]])
for atom in self:
atom.symbol = symbolmap[atom.symbol]
self.types = types
key = next_key()
def read_list(key_string, length, debug=False):
if key != key_string:
return [], key
lst = []
while len(lines):
w = lines.pop(0).split()
if len(w) > length:
lst.append([(int(w[1 + c]) - 1) for c in range(length)])
else:
return lst, next_key()
return lst, None
bonds, key = read_list('Bonds', 3)
angles, key = read_list('Angles', 4)
dihedrals, key = read_list('Dihedrals', 5, True)
self.connectivities = {
'bonds': bonds,
'angles': angles,
'dihedrals': dihedrals
}
if 'bonds' in header:
assert len(bonds) == header['bonds']
self.connectivities['bond types'] = list(
range(header['bond types']))
if 'angles' in header:
assert len(angles) == header['angles']
self.connectivities['angle types'] = list(
range(header['angle types']))
if 'dihedrals' in header:
assert len(dihedrals) == header['dihedrals']
self.connectivities['dihedral types'] = list(range(
header['dihedral types']))
|