1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
from itertools import islice
from math import sqrt
from typing import IO
import numpy as np
from ase.data import atomic_numbers, covalent_radii
from ase.data.colors import jmol_colors
from ase.io.formats import string2index
from ase.utils import rotate
class PlottingVariables:
# removed writer - self
def __init__(self, atoms, rotation='', show_unit_cell=2,
radii=None, bbox=None, colors=None, scale=20,
maxwidth=500, extra_offset=(0., 0.)):
self.numbers = atoms.get_atomic_numbers()
self.colors = colors
if colors is None:
ncolors = len(jmol_colors)
self.colors = jmol_colors[self.numbers.clip(max=ncolors - 1)]
if radii is None:
radii = covalent_radii[self.numbers]
elif isinstance(radii, float):
radii = covalent_radii[self.numbers] * radii
else:
radii = np.array(radii)
natoms = len(atoms)
if isinstance(rotation, str):
rotation = rotate(rotation)
cell = atoms.get_cell()
disp = atoms.get_celldisp().flatten()
if show_unit_cell > 0:
L, T, D = cell_to_lines(self, cell)
cell_vertices = np.empty((2, 2, 2, 3))
for c1 in range(2):
for c2 in range(2):
for c3 in range(2):
cell_vertices[c1, c2, c3] = np.dot([c1, c2, c3],
cell) + disp
cell_vertices.shape = (8, 3)
cell_vertices = np.dot(cell_vertices, rotation)
else:
L = np.empty((0, 3))
T = None
D = None
cell_vertices = None
nlines = len(L)
positions = np.empty((natoms + nlines, 3))
R = atoms.get_positions()
positions[:natoms] = R
positions[natoms:] = L
r2 = radii**2
for n in range(nlines):
d = D[T[n]]
if ((((R - L[n] - d)**2).sum(1) < r2) &
(((R - L[n] + d)**2).sum(1) < r2)).any():
T[n] = -1
positions = np.dot(positions, rotation)
R = positions[:natoms]
if bbox is None:
X1 = (R - radii[:, None]).min(0)
X2 = (R + radii[:, None]).max(0)
if show_unit_cell == 2:
X1 = np.minimum(X1, cell_vertices.min(0))
X2 = np.maximum(X2, cell_vertices.max(0))
M = (X1 + X2) / 2
S = 1.05 * (X2 - X1)
w = scale * S[0]
if w > maxwidth:
w = maxwidth
scale = w / S[0]
h = scale * S[1]
offset = np.array([scale * M[0] - w / 2, scale * M[1] - h / 2, 0])
else:
w = (bbox[2] - bbox[0]) * scale
h = (bbox[3] - bbox[1]) * scale
offset = np.array([bbox[0], bbox[1], 0]) * scale
offset[0] = offset[0] - extra_offset[0]
offset[1] = offset[1] - extra_offset[1]
self.w = w + extra_offset[0]
self.h = h + extra_offset[1]
positions *= scale
positions -= offset
if nlines > 0:
D = np.dot(D, rotation)[:, :2] * scale
if cell_vertices is not None:
cell_vertices *= scale
cell_vertices -= offset
cell = np.dot(cell, rotation)
cell *= scale
self.cell = cell
self.positions = positions
self.D = D
self.T = T
self.cell_vertices = cell_vertices
self.natoms = natoms
self.d = 2 * scale * radii
self.constraints = atoms.constraints
# extension for partial occupancies
self.frac_occ = False
self.tags = None
self.occs = None
try:
self.occs = atoms.info['occupancy']
self.tags = atoms.get_tags()
self.frac_occ = True
except KeyError:
pass
def cell_to_lines(writer, cell):
# XXX this needs to be updated for cell vectors that are zero.
# Cannot read the code though! (What are T and D? nn?)
nlines = 0
nsegments = []
for c in range(3):
d = sqrt((cell[c]**2).sum())
n = max(2, int(d / 0.3))
nsegments.append(n)
nlines += 4 * n
positions = np.empty((nlines, 3))
T = np.empty(nlines, int)
D = np.zeros((3, 3))
n1 = 0
for c in range(3):
n = nsegments[c]
dd = cell[c] / (4 * n - 2)
D[c] = dd
P = np.arange(1, 4 * n + 1, 4)[:, None] * dd
T[n1:] = c
for i, j in [(0, 0), (0, 1), (1, 0), (1, 1)]:
n2 = n1 + n
positions[n1:n2] = P + i * cell[c - 2] + j * cell[c - 1]
n1 = n2
return positions, T, D
def make_patch_list(writer):
from matplotlib.patches import Circle, PathPatch, Wedge
from matplotlib.path import Path
indices = writer.positions[:, 2].argsort()
patch_list = []
for a in indices:
xy = writer.positions[a, :2]
if a < writer.natoms:
r = writer.d[a] / 2
if writer.frac_occ:
site_occ = writer.occs[str(writer.tags[a])]
# first an empty circle if a site is not fully occupied
if (np.sum([v for v in site_occ.values()])) < 1.0:
# fill with white
fill = '#ffffff'
patch = Circle(xy, r, facecolor=fill,
edgecolor='black')
patch_list.append(patch)
start = 0
# start with the dominant species
for sym, occ in sorted(site_occ.items(),
key=lambda x: x[1],
reverse=True):
if np.round(occ, decimals=4) == 1.0:
patch = Circle(xy, r, facecolor=writer.colors[a],
edgecolor='black')
patch_list.append(patch)
else:
# jmol colors for the moment
extent = 360. * occ
patch = Wedge(
xy, r, start, start + extent,
facecolor=jmol_colors[atomic_numbers[sym]],
edgecolor='black')
patch_list.append(patch)
start += extent
else:
if ((xy[1] + r > 0) and (xy[1] - r < writer.h) and
(xy[0] + r > 0) and (xy[0] - r < writer.w)):
patch = Circle(xy, r, facecolor=writer.colors[a],
edgecolor='black')
patch_list.append(patch)
else:
a -= writer.natoms
c = writer.T[a]
if c != -1:
hxy = writer.D[c]
patch = PathPatch(Path((xy + hxy, xy - hxy)))
patch_list.append(patch)
return patch_list
class ImageChunk:
"""Base Class for a file chunk which contains enough information to
reconstruct an atoms object."""
def build(self, **kwargs):
"""Construct the atoms object from the stored information,
and return it"""
class ImageIterator:
"""Iterate over chunks, to return the corresponding Atoms objects.
Will only build the atoms objects which corresponds to the requested
indices when called.
Assumes ``ichunks`` is in iterator, which returns ``ImageChunk``
type objects. See extxyz.py:iread_xyz as an example.
"""
def __init__(self, ichunks):
self.ichunks = ichunks
def __call__(self, fd: IO, index=None, **kwargs):
if isinstance(index, str):
index = string2index(index)
if index is None or index == ':':
index = slice(None, None, None)
if not isinstance(index, (slice, str)):
index = slice(index, (index + 1) or None)
for chunk in self._getslice(fd, index):
yield chunk.build(**kwargs)
def _getslice(self, fd: IO, indices: slice):
try:
iterator = islice(self.ichunks(fd),
indices.start, indices.stop,
indices.step)
except ValueError:
# Negative indices. Go through the whole thing to get the length,
# which allows us to evaluate the slice, and then read it again
if not hasattr(fd, 'seekable') or not fd.seekable():
raise ValueError('Negative indices only supported for '
'seekable streams')
startpos = fd.tell()
nchunks = 0
for _ in self.ichunks(fd):
nchunks += 1
fd.seek(startpos)
indices_tuple = indices.indices(nchunks)
iterator = islice(self.ichunks(fd), *indices_tuple)
return iterator
def verify_cell_for_export(cell, check_orthorhombric=True):
"""Function to verify if the cell size is defined and if the cell is
Parameters:
cell: cell object
cell to be checked.
check_orthorhombric: bool
If True, check if the cell is orthorhombric, raise an ``ValueError`` if
the cell is orthorhombric. If False, doesn't check if the cell is
orthorhombric.
Raise a ``ValueError`` if the cell if not suitable for export to mustem xtl
file or prismatic/computem xyz format:
- if cell is not orthorhombic (only when check_orthorhombric=True)
- if cell size is not defined
"""
if check_orthorhombric and not cell.orthorhombic:
raise ValueError('To export to this format, the cell needs to be '
'orthorhombic.')
if cell.rank < 3:
raise ValueError('To export to this format, the cell size needs '
'to be set: current cell is {}.'.format(cell))
def verify_dictionary(atoms, dictionary, dictionary_name):
"""
Verify a dictionary have a key for each symbol present in the atoms object.
Parameters:
dictionary: dict
Dictionary to be checked.
dictionary_name: dict
Name of the dictionary to be displayed in the error message.
cell: cell object
cell to be checked.
Raise a ``ValueError`` if the key doesn't match the atoms present in the
cell.
"""
# Check if we have enough key
for key in set(atoms.symbols):
if key not in dictionary:
raise ValueError('Missing the {} key in the `{}` dictionary.'
''.format(key, dictionary_name))
def segment_list(data, segment_size):
"""Segments a list into sublists of a specified size."""
return [data[i:i + segment_size] for i in range(0, len(data), segment_size)]
|