File: wien2k.py

package info (click to toggle)
python-ase 3.24.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 15,448 kB
  • sloc: python: 144,945; xml: 2,728; makefile: 113; javascript: 47
file content (181 lines) | stat: -rw-r--r-- 6,068 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import numpy as np

from ase import Atoms
from ase.units import Bohr, Ry
from ase.utils import reader, writer


def read_scf(filename):
    try:
        with open(filename + '.scf') as fd:
            pip = fd.readlines()
        ene = []
        for line in pip:
            if line[0:4] == ':ENE':
                ene.append(float(line[43:59]) * Ry)
        return ene
    except Exception:  # XXX Which kind of exception exactly?
        return None


@reader
def read_struct(fd, ase=True):
    pip = fd.readlines()
    lattice = pip[1][0:3]
    nat = int(pip[1][27:30])
    cell = np.zeros(6)
    for i in range(6):
        cell[i] = float(pip[3][0 + i * 10:10 + i * 10])
    cell[0:3] = cell[0:3] * Bohr
    if lattice == 'P  ':
        lattice = 'P'
    elif lattice == 'H  ':
        lattice = 'P'
        cell[3:6] = [90.0, 90.0, 120.0]
    elif lattice == 'R  ':
        lattice = 'R'
    elif lattice == 'F  ':
        lattice = 'F'
    elif lattice == 'B  ':
        lattice = 'I'
    elif lattice == 'CXY':
        lattice = 'C'
    elif lattice == 'CXZ':
        lattice = 'B'
    elif lattice == 'CYZ':
        lattice = 'A'
    else:
        raise RuntimeError('TEST needed')
    pos = np.array([])
    atomtype = []
    rmt = []
    neq = np.zeros(nat)
    iline = 4
    indif = 0
    for iat in range(nat):
        indifini = indif
        if len(pos) == 0:
            pos = np.array([[float(pip[iline][12:22]),
                             float(pip[iline][25:35]),
                             float(pip[iline][38:48])]])
        else:
            pos = np.append(pos, np.array([[float(pip[iline][12:22]),
                                            float(pip[iline][25:35]),
                                            float(pip[iline][38:48])]]),
                            axis=0)
        indif += 1
        iline += 1
        neq[iat] = int(pip[iline][15:17])
        iline += 1
        for _ in range(1, int(neq[iat])):
            pos = np.append(pos, np.array([[float(pip[iline][12:22]),
                                            float(pip[iline][25:35]),
                                            float(pip[iline][38:48])]]),
                            axis=0)
            indif += 1
            iline += 1
        for _ in range(indif - indifini):
            atomtype.append(pip[iline][0:2].replace(' ', ''))
            rmt.append(float(pip[iline][43:48]))
        iline += 4
    if ase:
        cell2 = coorsys(cell)
        atoms = Atoms(atomtype, pos, pbc=True)
        atoms.set_cell(cell2, scale_atoms=True)
        cell2 = np.dot(c2p(lattice), cell2)
        if lattice == 'R':
            atoms.set_cell(cell2, scale_atoms=True)
        else:
            atoms.set_cell(cell2)
        return atoms
    else:
        return cell, lattice, pos, atomtype, rmt


@writer
def write_struct(fd, atoms2=None, rmt=None, lattice='P', zza=None):
    atoms = atoms2.copy()
    atoms.wrap()
    fd.write('ASE generated\n')
    nat = len(atoms)
    if rmt is None:
        rmt = [2.0] * nat
    fd.write(lattice +
             '   LATTICE,NONEQUIV.ATOMS:%3i\nMODE OF CALC=RELA\n' % nat)
    cell = atoms.get_cell()
    metT = np.dot(cell, np.transpose(cell))
    cell2 = cellconst(metT)
    cell2[0:3] = cell2[0:3] / Bohr
    fd.write(('%10.6f' * 6) % tuple(cell2) + '\n')
    if zza is None:
        zza = atoms.get_atomic_numbers()
    for ii in range(nat):
        fd.write('ATOM %3i: ' % (ii + 1))
        pos = atoms.get_scaled_positions()[ii]
        fd.write('X=%10.8f Y=%10.8f Z=%10.8f\n' % tuple(pos))
        fd.write('          MULT= 1          ISPLIT= 1\n')
        zz = zza[ii]
        if zz > 71:
            ro = 0.000005
        elif zz > 36:
            ro = 0.00001
        elif zz > 18:
            ro = 0.00005
        else:
            ro = 0.0001
        fd.write('%-10s NPT=%5i  R0=%9.8f RMT=%10.4f   Z:%10.5f\n' %
                 (atoms.get_chemical_symbols()[ii], 781, ro, rmt[ii], zz))
        fd.write(f'LOCAL ROT MATRIX:    {1.0:9.7f} {0.0:9.7f} {0.0:9.7f}\n')
        fd.write(f'                     {0.0:9.7f} {1.0:9.7f} {0.0:9.7f}\n')
        fd.write(f'                     {0.0:9.7f} {0.0:9.7f} {1.0:9.7f}\n')
    fd.write('   0\n')


def cellconst(metT):
    """ metT=np.dot(cell,cell.T) """
    aa = np.sqrt(metT[0, 0])
    bb = np.sqrt(metT[1, 1])
    cc = np.sqrt(metT[2, 2])
    gamma = np.arccos(metT[0, 1] / (aa * bb)) / np.pi * 180.0
    beta = np.arccos(metT[0, 2] / (aa * cc)) / np.pi * 180.0
    alpha = np.arccos(metT[1, 2] / (bb * cc)) / np.pi * 180.0
    return np.array([aa, bb, cc, alpha, beta, gamma])


def coorsys(latconst):
    a = latconst[0]
    b = latconst[1]
    c = latconst[2]
    cal = np.cos(latconst[3] * np.pi / 180.0)
    cbe = np.cos(latconst[4] * np.pi / 180.0)
    cga = np.cos(latconst[5] * np.pi / 180.0)
    sga = np.sin(latconst[5] * np.pi / 180.0)
    return np.array([[a, b * cga, c * cbe],
                     [0, b * sga, c * (cal - cbe * cga) / sga],
                     [0, 0, c * np.sqrt(1 - cal**2 - cbe**2 - cga**2 +
                                        2 * cal * cbe * cga) / sga]
                     ]).transpose()


def c2p(lattice):
    """ apply as eg. cell2 = np.dot(c2p('F'), cell)"""
    if lattice == 'P':
        cell = np.eye(3)
    elif lattice == 'F':
        cell = np.array([[0.0, 0.5, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0]])
    elif lattice == 'I':
        cell = np.array([[-0.5, 0.5, 0.5], [0.5, -0.5, 0.5], [0.5, 0.5, -0.5]])
    elif lattice == 'C':
        cell = np.array([[0.5, 0.5, 0.0], [0.5, -0.5, 0.0], [0.0, 0.0, -1.0]])
    elif lattice == 'B':
        cell = np.array([[0.5, 0.0, 0.5], [0.0, 1.0, 0.0], [0.5, 0.0, -0.5]])
    elif lattice == 'A':
        cell = np.array([[-1.0, 0.0, 0.0], [0.0, -0.5, 0.5], [0.0, 0.5, 0.5]])
    elif lattice == 'R':
        cell = np.array([[2.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0],
                         [-1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0],
                         [-1.0 / 3.0, -2.0 / 3.0, 1.0 / 3.0]])

    else:
        raise ValueError('lattice is ' + lattice + '!')
    return cell