File: xsf.py

package info (click to toggle)
python-ase 3.24.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 15,448 kB
  • sloc: python: 144,945; xml: 2,728; makefile: 113; javascript: 47
file content (269 lines) | stat: -rw-r--r-- 8,620 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import numpy as np

from ase.atoms import Atoms
from ase.calculators.singlepoint import SinglePointCalculator
from ase.data import atomic_numbers
from ase.units import Hartree
from ase.utils import reader, writer


@writer
def write_xsf(fileobj, images, data=None, origin=None, span_vectors=None):
    is_anim = len(images) > 1

    if is_anim:
        fileobj.write('ANIMSTEPS %d\n' % len(images))

    numbers = images[0].get_atomic_numbers()

    pbc = images[0].get_pbc()
    npbc = sum(pbc)
    if pbc[2]:
        fileobj.write('CRYSTAL\n')
        assert npbc == 3
    elif pbc[1]:
        fileobj.write('SLAB\n')
        assert npbc == 2
    elif pbc[0]:
        fileobj.write('POLYMER\n')
        assert npbc == 1
    else:
        # (Header written as part of image loop)
        assert npbc == 0

    cell_variable = False
    for image in images[1:]:
        if np.abs(images[0].cell - image.cell).max() > 1e-14:
            cell_variable = True
            break

    for n, atoms in enumerate(images):
        anim_token = ' %d' % (n + 1) if is_anim else ''
        if pbc.any():
            write_cell = (n == 0 or cell_variable)
            if write_cell:
                if cell_variable:
                    fileobj.write(f'PRIMVEC{anim_token}\n')
                else:
                    fileobj.write('PRIMVEC\n')
                cell = atoms.get_cell()
                for i in range(3):
                    fileobj.write(' %.14f %.14f %.14f\n' % tuple(cell[i]))

            fileobj.write(f'PRIMCOORD{anim_token}\n')
        else:
            fileobj.write(f'ATOMS{anim_token}\n')

        # Get the forces if it's not too expensive:
        calc = atoms.calc
        if (calc is not None and
            (hasattr(calc, 'calculation_required') and
             not calc.calculation_required(atoms, ['forces']))):
            forces = atoms.get_forces() / Hartree
        else:
            forces = None

        pos = atoms.get_positions()

        if pbc.any():
            fileobj.write(' %d 1\n' % len(pos))
        for a in range(len(pos)):
            fileobj.write(' %2d' % numbers[a])
            fileobj.write(' %20.14f %20.14f %20.14f' % tuple(pos[a]))
            if forces is None:
                fileobj.write('\n')
            else:
                fileobj.write(' %20.14f %20.14f %20.14f\n' % tuple(forces[a]))

    if data is None:
        return

    fileobj.write('BEGIN_BLOCK_DATAGRID_3D\n')
    fileobj.write(' data\n')
    fileobj.write(' BEGIN_DATAGRID_3Dgrid#1\n')

    data = np.asarray(data)
    if data.dtype == complex:
        data = np.abs(data)

    shape = data.shape
    fileobj.write('  %d %d %d\n' % shape)

    cell = atoms.get_cell()
    if origin is None:
        origin = np.zeros(3)
        for i in range(3):
            if not pbc[i]:
                origin += cell[i] / shape[i]
    fileobj.write('  %f %f %f\n' % tuple(origin))

    for i in range(3):
        # XXXX is this not just supposed to be the cell?
        # What's with the strange division?
        # This disagrees with the output of Octopus.  Investigate
        if span_vectors is None:
            fileobj.write('  %f %f %f\n' %
                          tuple(cell[i] * (shape[i] + 1) / shape[i]))
        else:
            fileobj.write('  %f %f %f\n' % tuple(span_vectors[i]))

    for k in range(shape[2]):
        for j in range(shape[1]):
            fileobj.write('   ')
            fileobj.write(' '.join(['%f' % d for d in data[:, j, k]]))
            fileobj.write('\n')
        fileobj.write('\n')

    fileobj.write(' END_DATAGRID_3D\n')
    fileobj.write('END_BLOCK_DATAGRID_3D\n')


@reader
def iread_xsf(fileobj, read_data=False):
    """Yield images and optionally data from xsf file.

    Yields image1, image2, ..., imageN[, data, origin,
                                        span_vectors].

    Images are Atoms objects and data is a numpy array.

    It also returns the origin of the simulation box
    as a numpy array and its spanning vectors as a
     list of numpy arrays, if data is returned.

    Presently supports only a single 3D datagrid."""
    def _line_generator_func():
        for line in fileobj:
            line = line.strip()
            if not line or line.startswith('#'):
                continue  # Discard comments and empty lines
            yield line

    _line_generator = _line_generator_func()

    def readline():
        return next(_line_generator)

    line = readline()

    if line.startswith('ANIMSTEPS'):
        nimages = int(line.split()[1])
        line = readline()
    else:
        nimages = 1

    if line == 'CRYSTAL':
        pbc = (True, True, True)
    elif line == 'SLAB':
        pbc = (True, True, False)
    elif line == 'POLYMER':
        pbc = (True, False, False)
    else:
        assert line.startswith('ATOMS'), line  # can also be ATOMS 1
        pbc = (False, False, False)

    cell = None
    for n in range(nimages):
        if any(pbc):
            line = readline()
            if line.startswith('PRIMCOORD'):
                assert cell is not None  # cell read from previous image
            else:
                assert line.startswith('PRIMVEC')
                cell = []
                for i in range(3):
                    cell.append([float(x) for x in readline().split()])

                line = readline()
                if line.startswith('CONVVEC'):  # ignored;
                    for i in range(3):
                        readline()
                    line = readline()

            assert line.startswith('PRIMCOORD')
            natoms = int(readline().split()[0])
            lines = [readline() for _ in range(natoms)]
        else:
            assert line.startswith('ATOMS'), line
            line = readline()
            lines = []
            while not (line.startswith('ATOMS') or line.startswith('BEGIN')):
                lines.append(line)
                try:
                    line = readline()
                except StopIteration:
                    break
            if line.startswith('BEGIN'):
                # We read "too far" and accidentally got the header
                # of the data section.  This happens only when parsing
                # ATOMS blocks, because one cannot infer their length.
                # We will remember the line until later then.
                data_header_line = line

        numbers = []
        positions = []
        for positionline in lines:
            tokens = positionline.split()
            symbol = tokens[0]
            if symbol.isdigit():
                numbers.append(int(symbol))
            else:
                numbers.append(atomic_numbers[symbol.capitalize()])
            positions.append([float(x) for x in tokens[1:]])

        positions = np.array(positions)
        if len(positions[0]) == 3:
            forces = None
        else:
            forces = positions[:, 3:] * Hartree
            positions = positions[:, :3]

        image = Atoms(numbers, positions, cell=cell, pbc=pbc)

        if forces is not None:
            image.calc = SinglePointCalculator(image, forces=forces)
        yield image

    if read_data:
        if any(pbc):
            line = readline()
        else:
            line = data_header_line
        assert line.startswith('BEGIN_BLOCK_DATAGRID_3D')
        readline()  # name
        line = readline()
        assert line.startswith('BEGIN_DATAGRID_3D')

        shape = [int(x) for x in readline().split()]
        assert len(shape) == 3
        origin = [float(x) for x in readline().split()]
        origin = np.array(origin)

        span_vectors = []
        for i in range(3):
            span_vector = [float(x) for x in readline().split()]
            span_vector = np.array(span_vector)
            span_vectors.append(span_vector)
        span_vectors = np.array(span_vectors)
        assert len(span_vectors) == len(shape)

        npoints = np.prod(shape)

        data = []
        line = readline()  # First line of data
        while not line.startswith('END_DATAGRID_3D'):
            data.extend([float(x) for x in line.split()])
            line = readline()
        assert len(data) == npoints
        data = np.array(data, float).reshape(shape[::-1]).T
        # Note that data array is Fortran-ordered
        yield data, origin, span_vectors


def read_xsf(fileobj, index=-1, read_data=False):
    images = list(iread_xsf(fileobj, read_data=read_data))
    if read_data:
        array, origin, span_vectors = images[-1]
        images = images[:-1]
        return array, origin, span_vectors, images[index]
    return images[index]