1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
import numpy as np
from ase.atoms import Atoms
from ase.calculators.singlepoint import SinglePointCalculator
from ase.data import atomic_numbers
from ase.units import Hartree
from ase.utils import reader, writer
@writer
def write_xsf(fileobj, images, data=None, origin=None, span_vectors=None):
is_anim = len(images) > 1
if is_anim:
fileobj.write('ANIMSTEPS %d\n' % len(images))
numbers = images[0].get_atomic_numbers()
pbc = images[0].get_pbc()
npbc = sum(pbc)
if pbc[2]:
fileobj.write('CRYSTAL\n')
assert npbc == 3
elif pbc[1]:
fileobj.write('SLAB\n')
assert npbc == 2
elif pbc[0]:
fileobj.write('POLYMER\n')
assert npbc == 1
else:
# (Header written as part of image loop)
assert npbc == 0
cell_variable = False
for image in images[1:]:
if np.abs(images[0].cell - image.cell).max() > 1e-14:
cell_variable = True
break
for n, atoms in enumerate(images):
anim_token = ' %d' % (n + 1) if is_anim else ''
if pbc.any():
write_cell = (n == 0 or cell_variable)
if write_cell:
if cell_variable:
fileobj.write(f'PRIMVEC{anim_token}\n')
else:
fileobj.write('PRIMVEC\n')
cell = atoms.get_cell()
for i in range(3):
fileobj.write(' %.14f %.14f %.14f\n' % tuple(cell[i]))
fileobj.write(f'PRIMCOORD{anim_token}\n')
else:
fileobj.write(f'ATOMS{anim_token}\n')
# Get the forces if it's not too expensive:
calc = atoms.calc
if (calc is not None and
(hasattr(calc, 'calculation_required') and
not calc.calculation_required(atoms, ['forces']))):
forces = atoms.get_forces() / Hartree
else:
forces = None
pos = atoms.get_positions()
if pbc.any():
fileobj.write(' %d 1\n' % len(pos))
for a in range(len(pos)):
fileobj.write(' %2d' % numbers[a])
fileobj.write(' %20.14f %20.14f %20.14f' % tuple(pos[a]))
if forces is None:
fileobj.write('\n')
else:
fileobj.write(' %20.14f %20.14f %20.14f\n' % tuple(forces[a]))
if data is None:
return
fileobj.write('BEGIN_BLOCK_DATAGRID_3D\n')
fileobj.write(' data\n')
fileobj.write(' BEGIN_DATAGRID_3Dgrid#1\n')
data = np.asarray(data)
if data.dtype == complex:
data = np.abs(data)
shape = data.shape
fileobj.write(' %d %d %d\n' % shape)
cell = atoms.get_cell()
if origin is None:
origin = np.zeros(3)
for i in range(3):
if not pbc[i]:
origin += cell[i] / shape[i]
fileobj.write(' %f %f %f\n' % tuple(origin))
for i in range(3):
# XXXX is this not just supposed to be the cell?
# What's with the strange division?
# This disagrees with the output of Octopus. Investigate
if span_vectors is None:
fileobj.write(' %f %f %f\n' %
tuple(cell[i] * (shape[i] + 1) / shape[i]))
else:
fileobj.write(' %f %f %f\n' % tuple(span_vectors[i]))
for k in range(shape[2]):
for j in range(shape[1]):
fileobj.write(' ')
fileobj.write(' '.join(['%f' % d for d in data[:, j, k]]))
fileobj.write('\n')
fileobj.write('\n')
fileobj.write(' END_DATAGRID_3D\n')
fileobj.write('END_BLOCK_DATAGRID_3D\n')
@reader
def iread_xsf(fileobj, read_data=False):
"""Yield images and optionally data from xsf file.
Yields image1, image2, ..., imageN[, data, origin,
span_vectors].
Images are Atoms objects and data is a numpy array.
It also returns the origin of the simulation box
as a numpy array and its spanning vectors as a
list of numpy arrays, if data is returned.
Presently supports only a single 3D datagrid."""
def _line_generator_func():
for line in fileobj:
line = line.strip()
if not line or line.startswith('#'):
continue # Discard comments and empty lines
yield line
_line_generator = _line_generator_func()
def readline():
return next(_line_generator)
line = readline()
if line.startswith('ANIMSTEPS'):
nimages = int(line.split()[1])
line = readline()
else:
nimages = 1
if line == 'CRYSTAL':
pbc = (True, True, True)
elif line == 'SLAB':
pbc = (True, True, False)
elif line == 'POLYMER':
pbc = (True, False, False)
else:
assert line.startswith('ATOMS'), line # can also be ATOMS 1
pbc = (False, False, False)
cell = None
for n in range(nimages):
if any(pbc):
line = readline()
if line.startswith('PRIMCOORD'):
assert cell is not None # cell read from previous image
else:
assert line.startswith('PRIMVEC')
cell = []
for i in range(3):
cell.append([float(x) for x in readline().split()])
line = readline()
if line.startswith('CONVVEC'): # ignored;
for i in range(3):
readline()
line = readline()
assert line.startswith('PRIMCOORD')
natoms = int(readline().split()[0])
lines = [readline() for _ in range(natoms)]
else:
assert line.startswith('ATOMS'), line
line = readline()
lines = []
while not (line.startswith('ATOMS') or line.startswith('BEGIN')):
lines.append(line)
try:
line = readline()
except StopIteration:
break
if line.startswith('BEGIN'):
# We read "too far" and accidentally got the header
# of the data section. This happens only when parsing
# ATOMS blocks, because one cannot infer their length.
# We will remember the line until later then.
data_header_line = line
numbers = []
positions = []
for positionline in lines:
tokens = positionline.split()
symbol = tokens[0]
if symbol.isdigit():
numbers.append(int(symbol))
else:
numbers.append(atomic_numbers[symbol.capitalize()])
positions.append([float(x) for x in tokens[1:]])
positions = np.array(positions)
if len(positions[0]) == 3:
forces = None
else:
forces = positions[:, 3:] * Hartree
positions = positions[:, :3]
image = Atoms(numbers, positions, cell=cell, pbc=pbc)
if forces is not None:
image.calc = SinglePointCalculator(image, forces=forces)
yield image
if read_data:
if any(pbc):
line = readline()
else:
line = data_header_line
assert line.startswith('BEGIN_BLOCK_DATAGRID_3D')
readline() # name
line = readline()
assert line.startswith('BEGIN_DATAGRID_3D')
shape = [int(x) for x in readline().split()]
assert len(shape) == 3
origin = [float(x) for x in readline().split()]
origin = np.array(origin)
span_vectors = []
for i in range(3):
span_vector = [float(x) for x in readline().split()]
span_vector = np.array(span_vector)
span_vectors.append(span_vector)
span_vectors = np.array(span_vectors)
assert len(span_vectors) == len(shape)
npoints = np.prod(shape)
data = []
line = readline() # First line of data
while not line.startswith('END_DATAGRID_3D'):
data.extend([float(x) for x in line.split()])
line = readline()
assert len(data) == npoints
data = np.array(data, float).reshape(shape[::-1]).T
# Note that data array is Fortran-ordered
yield data, origin, span_vectors
def read_xsf(fileobj, index=-1, read_data=False):
images = list(iread_xsf(fileobj, read_data=read_data))
if read_data:
array, origin, span_vectors = images[-1]
images = images[:-1]
return array, origin, span_vectors, images[index]
return images[index]
|