1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
import re
from collections import namedtuple
from numbers import Real
from string import digits
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ase import Atoms
from ase.units import Angstrom, Bohr, nm
# split on newlines or semicolons
_re_linesplit = re.compile(r'\n|;')
# split definitions on whitespace or on "=" (possibly also with whitespace)
_re_defs = re.compile(r'\s*=\s*|\s+')
_ZMatrixRow = namedtuple(
'_ZMatrixRow', 'ind1 dist ind2 a_bend ind3 a_dihedral',
)
ThreeFloats = Union[Tuple[float, float, float], np.ndarray]
class _ZMatrixToAtoms:
known_units = dict(
distance={'angstrom': Angstrom, 'bohr': Bohr, 'au': Bohr, 'nm': nm},
angle={'radians': 1., 'degrees': np.pi / 180},
)
def __init__(self, dconv: Union[str, Real], aconv: Union[str, Real],
defs: Optional[Union[Dict[str, float],
str, List[str]]] = None) -> None:
self.dconv = self.get_units('distance', dconv) # type: float
self.aconv = self.get_units('angle', aconv) # type: float
self.set_defs(defs)
self.name_to_index: Optional[Dict[str, int]] = {}
self.symbols: List[str] = []
self.positions: List[ThreeFloats] = []
@property
def nrows(self):
return len(self.symbols)
def get_units(self, kind: str, value: Union[str, Real]) -> float:
if isinstance(value, Real):
return float(value)
out = self.known_units[kind].get(value.lower())
if out is None:
raise ValueError("Unknown {} units: {}"
.format(kind, value))
return out
def set_defs(self, defs: Union[Dict[str, float], str,
List[str], None]) -> None:
self.defs = {} # type: Dict[str, float]
if defs is None:
return
if isinstance(defs, dict):
self.defs.update(**defs)
return
if isinstance(defs, str):
defs = _re_linesplit.split(defs.strip())
for row in defs:
key, val = _re_defs.split(row)
self.defs[key] = self.get_var(val)
def get_var(self, val: str) -> float:
try:
return float(val)
except ValueError as e:
val_out = self.defs.get(val.lstrip('+-'))
if val_out is None:
raise ValueError('Invalid value encountered in Z-matrix: {}'
.format(val)) from e
return val_out * (-1 if val.startswith('-') else 1)
def get_index(self, name: str) -> int:
"""Find index for a given atom name"""
try:
return int(name) - 1
except ValueError as e:
if self.name_to_index is None or name not in self.name_to_index:
raise ValueError('Failed to determine index for name "{}"'
.format(name)) from e
return self.name_to_index[name]
def set_index(self, name: str) -> None:
"""Assign index to a given atom name for name -> index lookup"""
if self.name_to_index is None:
return
if name in self.name_to_index:
# "name" has been encountered before, so name_to_index is no
# longer meaningful. Destroy the map.
self.name_to_index = None
return
self.name_to_index[name] = self.nrows
def validate_indices(self, *indices: int) -> None:
"""Raises an error if indices in a Z-matrix row are invalid."""
if any(np.array(indices) >= self.nrows):
raise ValueError('An invalid Z-matrix was provided! Row {} refers '
'to atom indices {}, at least one of which '
"hasn't been defined yet!"
.format(self.nrows, indices))
if len(indices) != len(set(indices)):
raise ValueError('An atom index has been used more than once a '
'row of the Z-matrix! Row numbers {}, '
'referred indices: {}'
.format(self.nrows, indices))
def parse_row(self, row: str) -> Tuple[
str, Union[_ZMatrixRow, ThreeFloats],
]:
tokens = row.split()
name = tokens[0]
self.set_index(name)
if len(tokens) == 1:
assert self.nrows == 0
return name, np.zeros(3, dtype=float)
ind1 = self.get_index(tokens[1])
if ind1 == -1:
assert len(tokens) == 5
return name, np.array(list(map(self.get_var, tokens[2:])),
dtype=float)
dist = self.dconv * self.get_var(tokens[2])
if len(tokens) == 3:
assert self.nrows == 1
self.validate_indices(ind1)
return name, np.array([dist, 0, 0], dtype=float)
ind2 = self.get_index(tokens[3])
a_bend = self.aconv * self.get_var(tokens[4])
if len(tokens) == 5:
assert self.nrows == 2
self.validate_indices(ind1, ind2)
return name, _ZMatrixRow(ind1, dist, ind2, a_bend, None, None)
ind3 = self.get_index(tokens[5])
a_dihedral = self.aconv * self.get_var(tokens[6])
self.validate_indices(ind1, ind2, ind3)
return name, _ZMatrixRow(ind1, dist, ind2, a_bend, ind3,
a_dihedral)
def add_atom(self, name: str, pos: ThreeFloats) -> None:
"""Sets the symbol and position of an atom."""
self.symbols.append(
''.join([c for c in name if c not in digits]).capitalize()
)
self.positions.append(pos)
def add_row(self, row: str) -> None:
name, zrow = self.parse_row(row)
if not isinstance(zrow, _ZMatrixRow):
self.add_atom(name, zrow)
return
if zrow.ind3 is None:
# This is the third atom, so only a bond distance and an angle
# have been provided.
pos = self.positions[zrow.ind1].copy()
pos[0] += zrow.dist * np.cos(zrow.a_bend) * (zrow.ind2 - zrow.ind1)
pos[1] += zrow.dist * np.sin(zrow.a_bend)
self.add_atom(name, pos)
return
# ax1 is the dihedral axis, which is defined by the bond vector
# between the two inner atoms in the dihedral, ind1 and ind2
ax1 = self.positions[zrow.ind2] - self.positions[zrow.ind1]
ax1 /= np.linalg.norm(ax1)
# ax2 lies within the 1-2-3 plane, and it is perpendicular
# to the dihedral axis
ax2 = self.positions[zrow.ind2] - self.positions[zrow.ind3]
ax2 -= ax1 * (ax2 @ ax1)
ax2 /= np.linalg.norm(ax2)
# ax3 is a vector that forms the appropriate dihedral angle, though
# the bending angle is 90 degrees, rather than a_bend. It is formed
# from a linear combination of ax2 and (ax2 x ax1)
ax3 = (ax2 * np.cos(zrow.a_dihedral)
+ np.cross(ax2, ax1) * np.sin(zrow.a_dihedral))
# The final position vector is a linear combination of ax1 and ax3.
pos = ax1 * np.cos(zrow.a_bend) - ax3 * np.sin(zrow.a_bend)
pos *= zrow.dist / np.linalg.norm(pos)
pos += self.positions[zrow.ind1]
self.add_atom(name, pos)
def to_atoms(self) -> Atoms:
return Atoms(self.symbols, self.positions)
def parse_zmatrix(zmat: Union[str, List[str]],
distance_units: Union[str, Real] = 'angstrom',
angle_units: Union[str, Real] = 'degrees',
defs: Optional[Union[Dict[str, float], str,
List[str]]] = None) -> Atoms:
"""Converts a Z-matrix into an Atoms object.
Parameters:
zmat: Iterable or str
The Z-matrix to be parsed. Iteration over `zmat` should yield the rows
of the Z-matrix. If `zmat` is a str, it will be automatically split
into a list at newlines.
distance_units: str or float, optional
The units of distance in the provided Z-matrix.
Defaults to Angstrom.
angle_units: str or float, optional
The units for angles in the provided Z-matrix.
Defaults to degrees.
defs: dict or str, optional
If `zmat` contains symbols for bond distances, bending angles, and/or
dihedral angles instead of numeric values, then the definition of
those symbols should be passed to this function using this keyword
argument.
Note: The symbol definitions are typically printed adjacent to the
Z-matrix itself, but this function will not automatically separate
the symbol definitions from the Z-matrix.
Returns:
atoms: Atoms object
"""
zmatrix = _ZMatrixToAtoms(distance_units, angle_units, defs=defs)
# zmat should be a list containing the rows of the z-matrix.
# for convenience, allow block strings and split at newlines.
if isinstance(zmat, str):
zmat = _re_linesplit.split(zmat.strip())
for row in zmat:
zmatrix.add_row(row)
return zmatrix.to_atoms()
|