File: __init__.py

package info (click to toggle)
python-ase 3.24.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 15,448 kB
  • sloc: python: 144,945; xml: 2,728; makefile: 113; javascript: 47
file content (1500 lines) | stat: -rw-r--r-- 50,091 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
from abc import ABC, abstractmethod
from typing import Dict, List

import numpy as np

from ase.cell import Cell
from ase.dft.kpoints import BandPath, parse_path_string, sc_special_points
from ase.utils import pbc2pbc

_degrees = np.pi / 180


class BravaisLattice(ABC):
    """Represent Bravais lattices and data related to the Brillouin zone.

    There are 14 3D Bravais classes: CUB, FCC, BCC, ..., and TRI, and
    five 2D classes.

    Each class stores basic static information:

    >>> from ase.lattice import FCC, MCL
    >>> FCC.name
    'FCC'
    >>> FCC.longname
    'face-centred cubic'
    >>> FCC.pearson_symbol
    'cF'
    >>> MCL.parameters
    ('a', 'b', 'c', 'alpha')

    Each class can be instantiated with the specific lattice parameters
    that apply to that lattice:

    >>> MCL(3, 4, 5, 80)
    MCL(a=3, b=4, c=5, alpha=80)

    """
    # These parameters can be set by the @bravais decorator for a subclass.
    # (We could also use metaclasses to do this, but that's more abstract)
    name = None  # e.g. 'CUB', 'BCT', 'ORCF', ...
    longname = None  # e.g. 'cubic', 'body-centred tetragonal', ...
    parameters = None  # e.g. ('a', 'c')
    variants = None  # e.g. {'BCT1': <variant object>,
    #                        'BCT2': <variant object>}
    ndim = None

    def __init__(self, **kwargs):
        p = {}
        eps = kwargs.pop('eps', 2e-4)
        for k, v in kwargs.items():
            p[k] = float(v)
        assert set(p) == set(self.parameters)
        self._parameters = p
        self._eps = eps

        if len(self.variants) == 1:
            # If there's only one it has the same name as the lattice type
            self._variant = self.variants[self.name]
        else:
            name = self._variant_name(**self._parameters)
            self._variant = self.variants[name]

    @property
    def variant(self) -> str:
        """Return name of lattice variant.

        >>> from ase.lattice import BCT

        >>> BCT(3, 5).variant
        'BCT2'
        """
        return self._variant.name

    def __getattr__(self, name: str):
        if name in self._parameters:
            return self._parameters[name]
        return self.__getattribute__(name)  # Raises error

    def vars(self) -> Dict[str, float]:
        """Get parameter names and values of this lattice as a dictionary."""
        return dict(self._parameters)

    def conventional(self) -> 'BravaisLattice':
        """Get the conventional cell corresponding to this lattice."""
        cls = bravais_lattices[self.conventional_cls]
        return cls(**self._parameters)

    def tocell(self) -> Cell:
        """Return this lattice as a :class:`~ase.cell.Cell` object."""
        cell = self._cell(**self._parameters)
        return Cell(cell)

    def cellpar(self) -> np.ndarray:
        """Get cell lengths and angles as array of length 6.

        See :func:`ase.geometry.Cell.cellpar`."""
        # (Just a brute-force implementation)
        cell = self.tocell()
        return cell.cellpar()

    @property
    def special_path(self) -> str:
        """Get default special k-point path for this lattice as a string.

        >>> BCT(3, 5).special_path
        'GXYSGZS1NPY1Z,XP'
        """
        return self._variant.special_path

    @property
    def special_point_names(self) -> List[str]:
        """Return all special point names as a list of strings.

        >>> from ase.lattice import BCT

        >>> BCT(3, 5).special_point_names
        ['G', 'N', 'P', 'S', 'S1', 'X', 'Y', 'Y1', 'Z']
        """
        labels = parse_path_string(self._variant.special_point_names)
        assert len(labels) == 1  # list of lists
        return labels[0]

    def get_special_points_array(self) -> np.ndarray:
        """Return all special points for this lattice as an array.

        Ordering is consistent with special_point_names."""
        if self._variant.special_points is not None:
            # Fixed dictionary of special points
            d = self.get_special_points()
            labels = self.special_point_names
            assert len(d) == len(labels)
            points = np.empty((len(d), 3))
            for i, label in enumerate(labels):
                points[i] = d[label]
            return points

        # Special points depend on lattice parameters:
        points = self._special_points(variant=self._variant,
                                      **self._parameters)
        assert len(points) == len(self.special_point_names)
        return np.array(points)

    def get_special_points(self) -> Dict[str, np.ndarray]:
        """Return a dictionary of named special k-points for this lattice."""
        if self._variant.special_points is not None:
            return self._variant.special_points

        labels = self.special_point_names
        points = self.get_special_points_array()

        return dict(zip(labels, points))

    def plot_bz(self, path=None, special_points=None, **plotkwargs):
        """Plot the reciprocal cell and default bandpath."""
        # Create a generic bandpath (no interpolated kpoints):
        bandpath = self.bandpath(path=path, special_points=special_points,
                                 npoints=0)
        return bandpath.plot(dimension=self.ndim, **plotkwargs)

    def bandpath(self, path=None, npoints=None, special_points=None,
                 density=None) -> BandPath:
        """Return a :class:`~ase.dft.kpoints.BandPath` for this lattice.

        See :meth:`ase.cell.Cell.bandpath` for description of parameters.

        >>> from ase.lattice import BCT

        >>> BCT(3, 5).bandpath()
        BandPath(path='GXYSGZS1NPY1Z,XP', cell=[3x3], \
special_points={GNPSS1XYY1Z}, kpts=[51x3])

        .. note:: This produces the standard band path following AFlow
           conventions.  If your cell does not follow this convention,
           you will need :meth:`ase.cell.Cell.bandpath` instead or
           the kpoints may not correspond to your particular cell.

        """
        if special_points is None:
            special_points = self.get_special_points()

        if path is None:
            path = self._variant.special_path
        elif not isinstance(path, str):
            from ase.dft.kpoints import resolve_custom_points
            path, special_points = resolve_custom_points(path,
                                                         special_points,
                                                         self._eps)

        cell = self.tocell()
        bandpath = BandPath(cell=cell, path=path,
                            special_points=special_points)
        return bandpath.interpolate(npoints=npoints, density=density)

    @abstractmethod
    def _cell(self, **kwargs):
        """Return a Cell object from this Bravais lattice.

        Arguments are the dictionary of Bravais parameters."""

    def _special_points(self, **kwargs):
        """Return the special point coordinates as an npoints x 3 sequence.

        Subclasses typically return a nested list.

        Ordering must be same as kpoint labels.

        Arguments are the dictionary of Bravais parameters and the variant."""
        raise NotImplementedError

    def _variant_name(self, **kwargs):
        """Return the name (e.g. 'ORCF3') of variant.

        Arguments will be the dictionary of Bravais parameters."""
        raise NotImplementedError

    def __format__(self, spec):
        tokens = []
        if not spec:
            spec = '.6g'
        template = f'{{}}={{:{spec}}}'

        for name in self.parameters:
            value = self._parameters[name]
            tokens.append(template.format(name, value))
        return '{}({})'.format(self.name, ', '.join(tokens))

    def __str__(self) -> str:
        return self.__format__('')

    def __repr__(self) -> str:
        return self.__format__('.20g')

    def description(self) -> str:
        """Return complete description of lattice and Brillouin zone."""
        points = self.get_special_points()
        labels = self.special_point_names

        coordstring = '\n'.join(['    {:2s} {:7.4f} {:7.4f} {:7.4f}'
                                 .format(label, *points[label])
                                 for label in labels])

        string = """\
{repr}
  {variant}
  Special point coordinates:
{special_points}
""".format(repr=str(self),
           variant=self._variant,
           special_points=coordstring)
        return string

    @classmethod
    def type_description(cls):
        """Return complete description of this Bravais lattice type."""
        desc = """\
Lattice name: {name}
  Long name: {longname}
  Parameters: {parameters}
""".format(**vars(cls))

        chunks = [desc]
        for name in cls.variant_names:
            var = cls.variants[name]
            txt = str(var)
            lines = ['  ' + L for L in txt.splitlines()]
            lines.append('')
            chunks.extend(lines)

        return '\n'.join(chunks)


class Variant:
    variant_desc = """\
Variant name: {name}
  Special point names: {special_point_names}
  Default path: {special_path}
"""

    def __init__(self, name, special_point_names, special_path,
                 special_points=None):
        self.name = name
        self.special_point_names = special_point_names
        self.special_path = special_path
        if special_points is not None:
            special_points = dict(special_points)
            for key, value in special_points.items():
                special_points[key] = np.array(value)
        self.special_points = special_points
        # XXX Should make special_points available as a single array as well
        # (easier to transform that way)

    def __str__(self) -> str:
        return self.variant_desc.format(**vars(self))


bravais_names = []
bravais_lattices = {}
bravais_classes = {}


def bravaisclass(longname, crystal_family, lattice_system, pearson_symbol,
                 parameters, variants, ndim=3):
    """Decorator for Bravais lattice classes.

    This sets a number of class variables and processes the information
    about different variants into a list of Variant objects."""

    def decorate(cls):
        btype = cls.__name__
        cls.name = btype
        cls.longname = longname
        cls.crystal_family = crystal_family
        cls.lattice_system = lattice_system
        cls.pearson_symbol = pearson_symbol
        cls.parameters = tuple(parameters)
        cls.variant_names = []
        cls.variants = {}
        cls.ndim = ndim

        for [name, special_point_names, special_path,
             special_points] in variants:
            cls.variant_names.append(name)
            cls.variants[name] = Variant(name, special_point_names,
                                         special_path, special_points)

        # Register in global list and dictionary
        bravais_names.append(btype)
        bravais_lattices[btype] = cls
        bravais_classes[pearson_symbol] = cls
        return cls

    return decorate


# Common mappings of primitive to conventional cells:
_identity = np.identity(3, int)
_fcc_map = np.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]])
_bcc_map = np.array([[-1, 1, 1], [1, -1, 1], [1, 1, -1]])


class UnconventionalLattice(ValueError):
    pass


class Cubic(BravaisLattice):
    """Abstract class for cubic lattices."""
    conventional_cls = 'CUB'

    def __init__(self, a):
        super().__init__(a=a)


@bravaisclass('primitive cubic', 'cubic', 'cubic', 'cP', 'a',
              [['CUB', 'GXRM', 'GXMGRX,MR', sc_special_points['cubic']]])
class CUB(Cubic):
    conventional_cellmap = _identity

    def _cell(self, a):
        return a * np.eye(3)


@bravaisclass('face-centred cubic', 'cubic', 'cubic', 'cF', 'a',
              [['FCC', 'GKLUWX', 'GXWKGLUWLK,UX', sc_special_points['fcc']]])
class FCC(Cubic):
    conventional_cellmap = _bcc_map

    def _cell(self, a):
        return 0.5 * np.array([[0., a, a], [a, 0, a], [a, a, 0]])


@bravaisclass('body-centred cubic', 'cubic', 'cubic', 'cI', 'a',
              [['BCC', 'GHPN', 'GHNGPH,PN', sc_special_points['bcc']]])
class BCC(Cubic):
    conventional_cellmap = _fcc_map

    def _cell(self, a):
        return 0.5 * np.array([[-a, a, a], [a, -a, a], [a, a, -a]])


@bravaisclass('primitive tetragonal', 'tetragonal', 'tetragonal', 'tP', 'ac',
              [['TET', 'GAMRXZ', 'GXMGZRAZ,XR,MA',
                sc_special_points['tetragonal']]])
class TET(BravaisLattice):
    conventional_cls = 'TET'
    conventional_cellmap = _identity

    def __init__(self, a, c):
        super().__init__(a=a, c=c)

    def _cell(self, a, c):
        return np.diag(np.array([a, a, c]))


# XXX in BCT2 we use S for Sigma.
# Also in other places I think
@bravaisclass('body-centred tetragonal', 'tetragonal', 'tetragonal', 'tI',
              'ac',
              [['BCT1', 'GMNPXZZ1', 'GXMGZPNZ1M,XP', None],
               ['BCT2', 'GNPSS1XYY1Z', 'GXYSGZS1NPY1Z,XP', None]])
class BCT(BravaisLattice):
    conventional_cls = 'TET'
    conventional_cellmap = _fcc_map

    def __init__(self, a, c):
        super().__init__(a=a, c=c)

    def _cell(self, a, c):
        return 0.5 * np.array([[-a, a, c], [a, -a, c], [a, a, -c]])

    def _variant_name(self, a, c):
        return 'BCT1' if c < a else 'BCT2'

    def _special_points(self, a, c, variant):
        a2 = a * a
        c2 = c * c

        assert variant.name in self.variants

        if variant.name == 'BCT1':
            eta = .25 * (1 + c2 / a2)
            points = [[0, 0, 0],
                      [-.5, .5, .5],
                      [0., .5, 0.],
                      [.25, .25, .25],
                      [0., 0., .5],
                      [eta, eta, -eta],
                      [-eta, 1 - eta, eta]]
        else:
            eta = .25 * (1 + a2 / c2)  # Not same eta as BCT1!
            zeta = 0.5 * a2 / c2
            points = [[0., .0, 0.],
                      [0., .5, 0.],
                      [.25, .25, .25],
                      [-eta, eta, eta],
                      [eta, 1 - eta, -eta],
                      [0., 0., .5],
                      [-zeta, zeta, .5],
                      [.5, .5, -zeta],
                      [.5, .5, -.5]]
        return points


def check_orc(a, b, c):
    if not a < b < c:
        raise UnconventionalLattice('Expected a < b < c, got {}, {}, {}'
                                    .format(a, b, c))


class Orthorhombic(BravaisLattice):
    """Abstract class for orthorhombic types."""

    def __init__(self, a, b, c):
        check_orc(a, b, c)
        super().__init__(a=a, b=b, c=c)


@bravaisclass('primitive orthorhombic', 'orthorhombic', 'orthorhombic', 'oP',
              'abc',
              [['ORC', 'GRSTUXYZ', 'GXSYGZURTZ,YT,UX,SR',
                sc_special_points['orthorhombic']]])
class ORC(Orthorhombic):
    conventional_cls = 'ORC'
    conventional_cellmap = _identity

    def _cell(self, a, b, c):
        return np.diag([a, b, c]).astype(float)


@bravaisclass('face-centred orthorhombic', 'orthorhombic', 'orthorhombic',
              'oF', 'abc',
              [['ORCF1', 'GAA1LTXX1YZ', 'GYTZGXA1Y,TX1,XAZ,LG', None],
               ['ORCF2', 'GCC1DD1LHH1XYZ', 'GYCDXGZD1HC,C1Z,XH1,HY,LG', None],
               ['ORCF3', 'GAA1LTXX1YZ', 'GYTZGXA1Y,XAZ,LG', None]])
class ORCF(Orthorhombic):
    conventional_cls = 'ORC'
    conventional_cellmap = _bcc_map

    def _cell(self, a, b, c):
        return 0.5 * np.array([[0, b, c], [a, 0, c], [a, b, 0]])

    def _special_points(self, a, b, c, variant):
        a2 = a * a
        b2 = b * b
        c2 = c * c
        xminus = 0.25 * (1 + a2 / b2 - a2 / c2)
        xplus = 0.25 * (1 + a2 / b2 + a2 / c2)

        if variant.name == 'ORCF1' or variant.name == 'ORCF3':
            zeta = xminus
            eta = xplus

            points = [[0, 0, 0],
                      [.5, .5 + zeta, zeta],
                      [.5, .5 - zeta, 1 - zeta],
                      [.5, .5, .5],
                      [1., .5, .5],
                      [0., eta, eta],
                      [1., 1 - eta, 1 - eta],
                      [.5, 0, .5],
                      [.5, .5, 0]]
        else:
            assert variant.name == 'ORCF2'
            phi = 0.25 * (1 + c2 / b2 - c2 / a2)
            delta = 0.25 * (1 + b2 / a2 - b2 / c2)
            eta = xminus

            points = [[0, 0, 0],
                      [.5, .5 - eta, 1 - eta],
                      [.5, .5 + eta, eta],
                      [.5 - delta, .5, 1 - delta],
                      [.5 + delta, .5, delta],
                      [.5, .5, .5],
                      [1 - phi, .5 - phi, .5],
                      [phi, .5 + phi, .5],
                      [0., .5, .5],
                      [.5, 0., .5],
                      [.5, .5, 0.]]

        return points

    def _variant_name(self, a, b, c):
        diff = 1.0 / (a * a) - 1.0 / (b * b) - 1.0 / (c * c)
        if abs(diff) < self._eps:
            return 'ORCF3'
        return 'ORCF1' if diff > 0 else 'ORCF2'


@bravaisclass('body-centred orthorhombic', 'orthorhombic', 'orthorhombic',
              'oI', 'abc',
              [['ORCI', 'GLL1L2RSTWXX1YY1Z', 'GXLTWRX1ZGYSW,L1Y,Y1Z', None]])
class ORCI(Orthorhombic):
    conventional_cls = 'ORC'
    conventional_cellmap = _fcc_map

    def _cell(self, a, b, c):
        return 0.5 * np.array([[-a, b, c], [a, -b, c], [a, b, -c]])

    def _special_points(self, a, b, c, variant):
        a2 = a**2
        b2 = b**2
        c2 = c**2

        zeta = .25 * (1 + a2 / c2)
        eta = .25 * (1 + b2 / c2)
        delta = .25 * (b2 - a2) / c2
        mu = .25 * (a2 + b2) / c2

        points = [[0., 0., 0.],
                  [-mu, mu, .5 - delta],
                  [mu, -mu, .5 + delta],
                  [.5 - delta, .5 + delta, -mu],
                  [0, .5, 0],
                  [.5, 0, 0],
                  [0., 0., .5],
                  [.25, .25, .25],
                  [-zeta, zeta, zeta],
                  [zeta, 1 - zeta, -zeta],
                  [eta, -eta, eta],
                  [1 - eta, eta, -eta],
                  [.5, .5, -.5]]
        return points


@bravaisclass('base-centred orthorhombic', 'orthorhombic', 'orthorhombic',
              'oC', 'abc',
              [['ORCC', 'GAA1RSTXX1YZ', 'GXSRAZGYX1A1TY,ZT', None]])
class ORCC(BravaisLattice):
    conventional_cls = 'ORC'
    conventional_cellmap = np.array([[1, 1, 0], [-1, 1, 0], [0, 0, 1]])

    def __init__(self, a, b, c):
        # ORCC is the only ORCx lattice with a<b and not a<b<c
        if a >= b:
            raise UnconventionalLattice(f'Expected a < b, got a={a}, b={b}')
        super().__init__(a=a, b=b, c=c)

    def _cell(self, a, b, c):
        return np.array([[0.5 * a, -0.5 * b, 0], [0.5 * a, 0.5 * b, 0],
                         [0, 0, c]])

    def _special_points(self, a, b, c, variant):
        zeta = .25 * (1 + a * a / (b * b))
        points = [[0, 0, 0],
                  [zeta, zeta, .5],
                  [-zeta, 1 - zeta, .5],
                  [0, .5, .5],
                  [0, .5, 0],
                  [-.5, .5, .5],
                  [zeta, zeta, 0],
                  [-zeta, 1 - zeta, 0],
                  [-.5, .5, 0],
                  [0, 0, .5]]
        return points


@bravaisclass('primitive hexagonal', 'hexagonal', 'hexagonal', 'hP',
              'ac',
              [['HEX', 'GMKALH', 'GMKGALHA,LM,KH',
                sc_special_points['hexagonal']]])
class HEX(BravaisLattice):
    conventional_cls = 'HEX'
    conventional_cellmap = _identity

    def __init__(self, a, c):
        super().__init__(a=a, c=c)

    def _cell(self, a, c):
        x = 0.5 * np.sqrt(3)
        return np.array([[0.5 * a, -x * a, 0], [0.5 * a, x * a, 0],
                         [0., 0., c]])


@bravaisclass('primitive rhombohedral', 'hexagonal', 'rhombohedral', 'hR',
              ('a', 'alpha'),
              [['RHL1', 'GBB1FLL1PP1P2QXZ', 'GLB1,BZGX,QFP1Z,LP', None],
               ['RHL2', 'GFLPP1QQ1Z', 'GPZQGFP1Q1LZ', None]])
class RHL(BravaisLattice):
    conventional_cls = 'RHL'
    conventional_cellmap = _identity

    def __init__(self, a, alpha):
        if alpha >= 120:
            raise UnconventionalLattice('Need alpha < 120 degrees, got {}'
                                        .format(alpha))
        super().__init__(a=a, alpha=alpha)

    def _cell(self, a, alpha):
        alpha *= np.pi / 180
        acosa = a * np.cos(alpha)
        acosa2 = a * np.cos(0.5 * alpha)
        asina2 = a * np.sin(0.5 * alpha)
        acosfrac = acosa / acosa2
        xx = (1 - acosfrac**2)
        assert xx > 0.0
        return np.array([[acosa2, -asina2, 0], [acosa2, asina2, 0],
                         [a * acosfrac, 0, a * xx**0.5]])

    def _variant_name(self, a, alpha):
        return 'RHL1' if alpha < 90 else 'RHL2'

    def _special_points(self, a, alpha, variant):
        if variant.name == 'RHL1':
            cosa = np.cos(alpha * _degrees)
            eta = (1 + 4 * cosa) / (2 + 4 * cosa)
            nu = .75 - 0.5 * eta
            points = [[0, 0, 0],
                      [eta, .5, 1 - eta],
                      [.5, 1 - eta, eta - 1],
                      [.5, .5, 0],
                      [.5, 0, 0],
                      [0, 0, -.5],
                      [eta, nu, nu],
                      [1 - nu, 1 - nu, 1 - eta],
                      [nu, nu, eta - 1],
                      [1 - nu, nu, 0],
                      [nu, 0, -nu],
                      [.5, .5, .5]]
        else:
            eta = 1 / (2 * np.tan(alpha * _degrees / 2)**2)
            nu = .75 - 0.5 * eta
            points = [[0, 0, 0],
                      [.5, -.5, 0],
                      [.5, 0, 0],
                      [1 - nu, -nu, 1 - nu],
                      [nu, nu - 1, nu - 1],
                      [eta, eta, eta],
                      [1 - eta, -eta, -eta],
                      [.5, -.5, .5]]
        return points


def check_mcl(a, b, c, alpha):
    if b > c or alpha >= 90:
        raise UnconventionalLattice('Expected b <= c, alpha < 90; '
                                    'got a={}, b={}, c={}, alpha={}'
                                    .format(a, b, c, alpha))


@bravaisclass('primitive monoclinic', 'monoclinic', 'monoclinic', 'mP',
              ('a', 'b', 'c', 'alpha'),
              [['MCL', 'GACDD1EHH1H2MM1M2XYY1Z', 'GYHCEM1AXH1,MDZ,YD', None]])
class MCL(BravaisLattice):
    conventional_cls = 'MCL'
    conventional_cellmap = _identity

    def __init__(self, a, b, c, alpha):
        check_mcl(a, b, c, alpha)
        super().__init__(a=a, b=b, c=c, alpha=alpha)

    def _cell(self, a, b, c, alpha):
        alpha *= _degrees
        return np.array([[a, 0, 0], [0, b, 0],
                         [0, c * np.cos(alpha), c * np.sin(alpha)]])

    def _special_points(self, a, b, c, alpha, variant):
        cosa = np.cos(alpha * _degrees)
        eta = (1 - b * cosa / c) / (2 * np.sin(alpha * _degrees)**2)
        nu = .5 - eta * c * cosa / b

        points = [[0, 0, 0],
                  [.5, .5, 0],
                  [0, .5, .5],
                  [.5, 0, .5],
                  [.5, 0, -.5],
                  [.5, .5, .5],
                  [0, eta, 1 - nu],
                  [0, 1 - eta, nu],
                  [0, eta, -nu],
                  [.5, eta, 1 - nu],
                  [.5, 1 - eta, nu],
                  [.5, eta, -nu],
                  [0, .5, 0],
                  [0, 0, .5],
                  [0, 0, -.5],
                  [.5, 0, 0]]
        return points

    def _variant_name(self, a, b, c, alpha):
        check_mcl(a, b, c, alpha)
        return 'MCL'


@bravaisclass('base-centred monoclinic', 'monoclinic', 'monoclinic', 'mC',
              ('a', 'b', 'c', 'alpha'),
              [['MCLC1', 'GNN1FF1F2F3II1LMXX1X2YY1Z',
                'GYFLI,I1ZF1,YX1,XGN,MG', None],
               ['MCLC2', 'GNN1FF1F2F3II1LMXX1X2YY1Z',
                'GYFLI,I1ZF1,NGM', None],
               ['MCLC3', 'GFF1F2HH1H2IMNN1XYY1Y2Y3Z',
                'GYFHZIF1,H1Y1XGN,MG', None],
               ['MCLC4', 'GFF1F2HH1H2IMNN1XYY1Y2Y3Z',
                'GYFHZI,H1Y1XGN,MG', None],
               ['MCLC5', 'GFF1F2HH1H2II1LMNN1XYY1Y2Y3Z',
                'GYFLI,I1ZHF1,H1Y1XGN,MG', None]])
class MCLC(BravaisLattice):
    conventional_cls = 'MCL'
    conventional_cellmap = np.array([[1, -1, 0], [1, 1, 0], [0, 0, 1]])

    def __init__(self, a, b, c, alpha):
        check_mcl(a, b, c, alpha)
        super().__init__(a=a, b=b, c=c, alpha=alpha)

    def _cell(self, a, b, c, alpha):
        alpha *= np.pi / 180
        return np.array([[0.5 * a, 0.5 * b, 0], [-0.5 * a, 0.5 * b, 0],
                         [0, c * np.cos(alpha), c * np.sin(alpha)]])

    def _variant_name(self, a, b, c, alpha):
        # from ase.geometry.cell import mclc
        # okay, this is a bit hacky

        # We need the same parameters here as when determining the points.
        # Right now we just repeat the code:
        check_mcl(a, b, c, alpha)

        a2 = a * a
        b2 = b * b
        cosa = np.cos(alpha * _degrees)
        sina = np.sin(alpha * _degrees)
        sina2 = sina**2

        cell = self.tocell()
        lengths_angles = Cell(cell.reciprocal()).cellpar()

        kgamma = lengths_angles[-1]

        eps = self._eps
        # We should not compare angles in degrees versus lengths with
        # the same precision.
        if abs(kgamma - 90) < eps:
            variant = 2
        elif kgamma > 90:
            variant = 1
        elif kgamma < 90:
            num = b * cosa / c + b2 * sina2 / a2
            if abs(num - 1) < eps:
                variant = 4
            elif num < 1:
                variant = 3
            else:
                variant = 5
        variant = 'MCLC' + str(variant)
        return variant

    def _special_points(self, a, b, c, alpha, variant):
        variant = int(variant.name[-1])

        a2 = a * a
        b2 = b * b
        # c2 = c * c
        cosa = np.cos(alpha * _degrees)
        sina = np.sin(alpha * _degrees)
        sina2 = sina**2

        if variant == 1 or variant == 2:
            zeta = (2 - b * cosa / c) / (4 * sina2)
            eta = 0.5 + 2 * zeta * c * cosa / b
            psi = .75 - a2 / (4 * b2 * sina * sina)
            phi = psi + (.75 - psi) * b * cosa / c

            points = [[0, 0, 0],
                      [.5, 0, 0],
                      [0, -.5, 0],
                      [1 - zeta, 1 - zeta, 1 - eta],
                      [zeta, zeta, eta],
                      [-zeta, -zeta, 1 - eta],
                      [1 - zeta, -zeta, 1 - eta],
                      [phi, 1 - phi, .5],
                      [1 - phi, phi - 1, .5],
                      [.5, .5, .5],
                      [.5, 0, .5],
                      [1 - psi, psi - 1, 0],
                      [psi, 1 - psi, 0],
                      [psi - 1, -psi, 0],
                      [.5, .5, 0],
                      [-.5, -.5, 0],
                      [0, 0, .5]]
        elif variant == 3 or variant == 4:
            mu = .25 * (1 + b2 / a2)
            delta = b * c * cosa / (2 * a2)
            zeta = mu - 0.25 + (1 - b * cosa / c) / (4 * sina2)
            eta = 0.5 + 2 * zeta * c * cosa / b
            phi = 1 + zeta - 2 * mu
            psi = eta - 2 * delta

            points = [[0, 0, 0],
                      [1 - phi, 1 - phi, 1 - psi],
                      [phi, phi - 1, psi],
                      [1 - phi, -phi, 1 - psi],
                      [zeta, zeta, eta],
                      [1 - zeta, -zeta, 1 - eta],
                      [-zeta, -zeta, 1 - eta],
                      [.5, -.5, .5],
                      [.5, 0, .5],
                      [.5, 0, 0],
                      [0, -.5, 0],
                      [.5, -.5, 0],
                      [mu, mu, delta],
                      [1 - mu, -mu, -delta],
                      [-mu, -mu, -delta],
                      [mu, mu - 1, delta],
                      [0, 0, .5]]
        elif variant == 5:
            zeta = .25 * (b2 / a2 + (1 - b * cosa / c) / sina2)
            eta = 0.5 + 2 * zeta * c * cosa / b
            mu = .5 * eta + b2 / (4 * a2) - b * c * cosa / (2 * a2)
            nu = 2 * mu - zeta
            omega = (4 * nu - 1 - b2 * sina2 / a2) * c / (2 * b * cosa)
            delta = zeta * c * cosa / b + omega / 2 - .25
            rho = 1 - zeta * a2 / b2

            points = [[0, 0, 0],
                      [nu, nu, omega],
                      [1 - nu, 1 - nu, 1 - omega],
                      [nu, nu - 1, omega],
                      [zeta, zeta, eta],
                      [1 - zeta, -zeta, 1 - eta],
                      [-zeta, -zeta, 1 - eta],
                      [rho, 1 - rho, .5],
                      [1 - rho, rho - 1, .5],
                      [.5, .5, .5],
                      [.5, 0, .5],
                      [.5, 0, 0],
                      [0, -.5, 0],
                      [.5, -.5, 0],
                      [mu, mu, delta],
                      [1 - mu, -mu, -delta],
                      [-mu, -mu, -delta],
                      [mu, mu - 1, delta],
                      [0, 0, .5]]

        return points


tri_angles_explanation = """\
Angles kalpha, kbeta and kgamma of TRI lattice must be 1) all greater \
than 90 degrees with kgamma being the smallest, or 2) all smaller than \
90 with kgamma being the largest, or 3) kgamma=90 being the \
smallest of the three, or 4) kgamma=90 being the largest of the three.  \
Angles of reciprocal lattice are kalpha={}, kbeta={}, kgamma={}.  \
If you don't care, please use Cell.fromcellpar() instead."""

# XXX labels, paths, are all the same.


@bravaisclass('primitive triclinic', 'triclinic', 'triclinic', 'aP',
              ('a', 'b', 'c', 'alpha', 'beta', 'gamma'),
              [['TRI1a', 'GLMNRXYZ', 'XGY,LGZ,NGM,RG', None],
               ['TRI2a', 'GLMNRXYZ', 'XGY,LGZ,NGM,RG', None],
               ['TRI1b', 'GLMNRXYZ', 'XGY,LGZ,NGM,RG', None],
               ['TRI2b', 'GLMNRXYZ', 'XGY,LGZ,NGM,RG', None]])
class TRI(BravaisLattice):
    conventional_cls = 'TRI'
    conventional_cellmap = _identity

    def __init__(self, a, b, c, alpha, beta, gamma):
        super().__init__(a=a, b=b, c=c, alpha=alpha, beta=beta,
                         gamma=gamma)

    def _cell(self, a, b, c, alpha, beta, gamma):
        alpha, beta, gamma = np.array([alpha, beta, gamma])
        singamma = np.sin(gamma * _degrees)
        cosgamma = np.cos(gamma * _degrees)
        cosbeta = np.cos(beta * _degrees)
        cosalpha = np.cos(alpha * _degrees)
        a3x = c * cosbeta
        a3y = c / singamma * (cosalpha - cosbeta * cosgamma)
        a3z = c / singamma * np.sqrt(singamma**2 - cosalpha**2 - cosbeta**2
                                     + 2 * cosalpha * cosbeta * cosgamma)
        return np.array([[a, 0, 0], [b * cosgamma, b * singamma, 0],
                         [a3x, a3y, a3z]])

    def _variant_name(self, a, b, c, alpha, beta, gamma):
        cell = Cell.new([a, b, c, alpha, beta, gamma])
        icellpar = Cell(cell.reciprocal()).cellpar()
        kangles = kalpha, kbeta, kgamma = icellpar[3:]

        def raise_unconventional():
            raise UnconventionalLattice(tri_angles_explanation
                                        .format(*kangles))

        eps = self._eps
        if abs(kgamma - 90) < eps:
            if kalpha > 90 and kbeta > 90:
                var = '2a'
            elif kalpha < 90 and kbeta < 90:
                var = '2b'
            else:
                # Is this possible?  Maybe due to epsilon
                raise_unconventional()
        elif all(kangles > 90):
            if kgamma > min(kangles):
                raise_unconventional()
            var = '1a'
        elif all(kangles < 90):  # and kgamma > max(kalpha, kbeta):
            if kgamma < max(kangles):
                raise_unconventional()
            var = '1b'
        else:
            raise_unconventional()

        return 'TRI' + var

    def _special_points(self, a, b, c, alpha, beta, gamma, variant):
        # (None of the points actually depend on any parameters)
        # (We should store the points openly on the variant objects)
        if variant.name == 'TRI1a' or variant.name == 'TRI2a':
            points = [[0., 0., 0.],
                      [.5, .5, 0],
                      [0, .5, .5],
                      [.5, 0, .5],
                      [.5, .5, .5],
                      [.5, 0, 0],
                      [0, .5, 0],
                      [0, 0, .5]]
        else:
            points = [[0, 0, 0],
                      [.5, -.5, 0],
                      [0, 0, .5],
                      [-.5, -.5, .5],
                      [0, -.5, .5],
                      [0, -0.5, 0],
                      [.5, 0, 0],
                      [-.5, 0, .5]]

        return points


def get_subset_points(names, points):
    newpoints = {name: points[name] for name in names}
    return newpoints


@bravaisclass('primitive oblique', 'monoclinic', None, 'mp',
              ('a', 'b', 'alpha'), [['OBL', 'GYHCH1X', 'GYHCH1XG', None]],
              ndim=2)
class OBL(BravaisLattice):
    def __init__(self, a, b, alpha, **kwargs):
        check_rect(a, b)
        if alpha >= 90:
            raise UnconventionalLattice(
                f'Expected alpha < 90, got alpha={alpha}')
        super().__init__(a=a, b=b, alpha=alpha, **kwargs)

    def _cell(self, a, b, alpha):
        cosa = np.cos(alpha * _degrees)
        sina = np.sin(alpha * _degrees)

        return np.array([[a, 0, 0],
                         [b * cosa, b * sina, 0],
                         [0., 0., 0.]])

    def _special_points(self, a, b, alpha, variant):
        cosa = np.cos(alpha * _degrees)
        eta = (1 - a * cosa / b) / (2 * np.sin(alpha * _degrees)**2)
        nu = .5 - eta * b * cosa / a

        points = [[0, 0, 0],
                  [0, 0.5, 0],
                  [eta, 1 - nu, 0],
                  [.5, .5, 0],
                  [1 - eta, nu, 0],
                  [.5, 0, 0]]

        return points


@bravaisclass('primitive hexagonal', 'hexagonal', None, 'hp', 'a',
              [['HEX2D', 'GMK', 'GMKG',
                get_subset_points('GMK',
                                  sc_special_points['hexagonal'])]],
              ndim=2)
class HEX2D(BravaisLattice):
    def __init__(self, a, **kwargs):
        super().__init__(a=a, **kwargs)

    def _cell(self, a):
        x = 0.5 * np.sqrt(3)
        return np.array([[a, 0, 0],
                         [-0.5 * a, x * a, 0],
                         [0., 0., 0.]])


def check_rect(a, b):
    if a >= b:
        raise UnconventionalLattice(f'Expected a < b, got a={a}, b={b}')


@bravaisclass('primitive rectangular', 'orthorhombic', None, 'op', 'ab',
              [['RECT', 'GXSY', 'GXSYGS',
                get_subset_points('GXSY',
                                  sc_special_points['orthorhombic'])]],
              ndim=2)
class RECT(BravaisLattice):
    def __init__(self, a, b, **kwargs):
        check_rect(a, b)
        super().__init__(a=a, b=b, **kwargs)

    def _cell(self, a, b):
        return np.array([[a, 0, 0],
                         [0, b, 0],
                         [0, 0, 0.]])


@bravaisclass('centred rectangular', 'orthorhombic', None, 'oc',
              ('a', 'alpha'), [['CRECT', 'GXA1Y', 'GXA1YG', None]], ndim=2)
class CRECT(BravaisLattice):
    def __init__(self, a, alpha, **kwargs):
        # It would probably be better to define the CRECT cell
        # by (a, b) rather than (a, alpha).  Then we can require a < b
        # like in ordinary RECT.
        #
        # In 3D, all lattices in the same family generally take
        # identical parameters.
        if alpha >= 90:
            raise UnconventionalLattice(
                f'Expected alpha < 90.  Got alpha={alpha}')
        super().__init__(a=a, alpha=alpha, **kwargs)

    def _cell(self, a, alpha):
        x = np.cos(alpha * _degrees)
        y = np.sin(alpha * _degrees)
        return np.array([[a, 0, 0],
                         [a * x, a * y, 0],
                         [0, 0, 0.]])

    def _special_points(self, a, alpha, variant):
        sina2 = np.sin(alpha / 2 * _degrees)**2
        sina = np.sin(alpha * _degrees)**2
        eta = sina2 / sina
        cosa = np.cos(alpha * _degrees)
        xi = eta * cosa

        points = [[0, 0, 0],
                  [eta, - eta, 0],
                  [0.5 + xi, 0.5 - xi, 0],
                  [0.5, 0.5, 0]]

        return points


@bravaisclass('primitive square', 'tetragonal', None, 'tp', ('a',),
              [['SQR', 'GMX', 'MGXM',
                get_subset_points('GMX', sc_special_points['tetragonal'])]],
              ndim=2)
class SQR(BravaisLattice):
    def __init__(self, a, **kwargs):
        super().__init__(a=a, **kwargs)

    def _cell(self, a):
        return np.array([[a, 0, 0],
                         [0, a, 0],
                         [0, 0, 0.]])


@bravaisclass('primitive line', 'line', None, '?', ('a',),
              [['LINE', 'GX', 'GX', {'G': [0, 0, 0], 'X': [0.5, 0, 0]}]],
              ndim=1)
class LINE(BravaisLattice):
    def __init__(self, a, **kwargs):
        super().__init__(a=a, **kwargs)

    def _cell(self, a):
        return np.array([[a, 0.0, 0.0],
                         [0.0, 0.0, 0.0],
                         [0.0, 0.0, 0.0]])


def celldiff(cell1, cell2):
    """Return a unitless measure of the difference between two cells."""
    cell1 = Cell.ascell(cell1).complete()
    cell2 = Cell.ascell(cell2).complete()
    v1v2 = cell1.volume * cell2.volume
    if v1v2 < 1e-10:
        # (Proposed cell may be linearly dependent)
        return np.inf

    scale = v1v2**(-1. / 3.)  # --> 1/Ang^2
    x1 = cell1 @ cell1.T
    x2 = cell2 @ cell2.T
    dev = scale * np.abs(x2 - x1).max()
    return dev


def get_lattice_from_canonical_cell(cell, eps=2e-4):
    """Return a Bravais lattice representing the given cell.

    This works only for cells that are derived from the standard form
    (as generated by lat.tocell()) or rotations thereof.

    If the given cell does not resemble the known form of a Bravais
    lattice, raise RuntimeError."""
    return LatticeChecker(cell, eps).match()


def identify_lattice(cell, eps=2e-4, *, pbc=True):
    """Find Bravais lattice representing this cell.

    Returns Bravais lattice object representing the cell along with
    an operation that, applied to the cell, yields the same lengths
    and angles as the Bravais lattice object."""
    from ase.geometry.bravais_type_engine import niggli_op_table

    pbc = cell.any(1) & pbc2pbc(pbc)
    npbc = sum(pbc)

    cell = cell.uncomplete(pbc)
    rcell, reduction_op = cell.niggli_reduce(eps=eps)

    # We tabulate the cell's Niggli-mapped versions so we don't need to
    # redo any work when the same Niggli-operation appears multiple times
    # in the table:
    memory = {}

    # We loop through the most symmetric kinds (CUB etc.) and return
    # the first one we find:
    for latname in LatticeChecker.check_orders[npbc]:
        # There may be multiple Niggli operations that produce valid
        # lattices, at least for MCL.  In that case we will pick the
        # one whose angle is closest to 90, but it means we cannot
        # just return the first one we find so we must remember then:
        matching_lattices = []

        for op_key in niggli_op_table[latname]:
            checker_and_op = memory.get(op_key)
            if checker_and_op is None:
                normalization_op = np.array(op_key).reshape(3, 3)
                candidate = Cell(np.linalg.inv(normalization_op.T) @ rcell)
                checker = LatticeChecker(candidate, eps=eps)
                memory[op_key] = (checker, normalization_op)
            else:
                checker, normalization_op = checker_and_op

            lat = checker.query(latname)
            if lat is not None:
                op = normalization_op @ np.linalg.inv(reduction_op)
                matching_lattices.append((lat, op))

        if not matching_lattices:
            continue  # Move to next Bravais lattice

        lat, op = pick_best_lattice(matching_lattices)

        if npbc == 2 and op[2, 2] < 0:
            op = flip_2d_handedness(op)

        return lat, op

    raise RuntimeError('Failed to recognize lattice')


def flip_2d_handedness(op):
    # The 3x3 operation may flip the z axis, but then the x/y
    # components are necessarily also left-handed which
    # means a defacto left-handed 2D bandpath.
    #
    # We repair this by applying an operation that unflips the
    # z axis and interchanges x/y:
    repair_op = np.array([[0, 1, 0], [1, 0, 0], [0, 0, -1]])
    return repair_op @ op


def pick_best_lattice(matching_lattices):
    """Return (lat, op) with lowest orthogonality defect."""
    best = None
    best_defect = np.inf
    for lat, op in matching_lattices:
        cell = lat.tocell().complete()
        orthogonality_defect = np.prod(cell.lengths()) / cell.volume
        if orthogonality_defect < best_defect:
            best = lat, op
            best_defect = orthogonality_defect
    return best


class LatticeChecker:
    # The check order is slightly different than elsewhere listed order
    # as we need to check HEX/RHL before the ORCx family.
    check_orders = {
        1: ['LINE'],
        2: ['SQR', 'RECT', 'HEX2D', 'CRECT', 'OBL'],
        3: ['CUB', 'FCC', 'BCC', 'TET', 'BCT', 'HEX', 'RHL',
            'ORC', 'ORCF', 'ORCI', 'ORCC', 'MCL', 'MCLC', 'TRI']}

    def __init__(self, cell, eps=2e-4):
        """Generate Bravais lattices that look (or not) like the given cell.

        The cell must be reduced to canonical form, i.e., it must
        be possible to produce a cell with the same lengths and angles
        by directly through one of the Bravais lattice classes.

        Generally for internal use (this module).

        For each of the 14 Bravais lattices, this object can produce
        a lattice object which represents the same cell, or None if
        the tolerance eps is not met."""
        self.cell = cell
        self.eps = eps

        self.cellpar = cell.cellpar()
        self.lengths = self.A, self.B, self.C = self.cellpar[:3]
        self.angles = self.cellpar[3:]

        # Use a 'neutral' length for checking cubic lattices
        self.A0 = self.lengths.mean()

        # Vector of the diagonal and then off-diagonal dot products:
        #   [a1 · a1, a2 · a2, a3 · a3, a2 · a3, a3 · a1, a1 · a2]
        self.prods = (cell @ cell.T).flat[[0, 4, 8, 5, 2, 1]]

    def _check(self, latcls, *args):
        if any(arg <= 0 for arg in args):
            return None
        try:
            lat = latcls(*args)
        except UnconventionalLattice:
            return None

        newcell = lat.tocell()
        err = celldiff(self.cell, newcell)
        if err < self.eps:
            return lat

    def match(self):
        """Match cell against all lattices, returning most symmetric match.

        Returns the lattice object.  Raises RuntimeError on failure."""
        for name in self.check_orders[self.cell.rank]:
            lat = self.query(name)
            if lat:
                return lat
        raise RuntimeError('Could not find lattice type for cell '
                           'with lengths and angles {}'
                           .format(self.cell.cellpar().tolist()))

    def query(self, latname):
        """Match cell against named Bravais lattice.

        Return lattice object on success, None on failure."""
        meth = getattr(self, latname)
        lat = meth()
        return lat

    def LINE(self):
        return self._check(LINE, self.lengths[0])

    def SQR(self):
        return self._check(SQR, self.lengths[0])

    def RECT(self):
        return self._check(RECT, *self.lengths[:2])

    def CRECT(self):
        return self._check(CRECT, self.lengths[0], self.angles[2])

    def HEX2D(self):
        return self._check(HEX2D, self.lengths[0])

    def OBL(self):
        return self._check(OBL, *self.lengths[:2], self.angles[2])

    def CUB(self):
        # These methods (CUB, FCC, ...) all return a lattice object if
        # it matches, else None.
        return self._check(CUB, self.A0)

    def FCC(self):
        return self._check(FCC, np.sqrt(2) * self.A0)

    def BCC(self):
        return self._check(BCC, 2.0 * self.A0 / np.sqrt(3))

    def TET(self):
        return self._check(TET, self.A, self.C)

    def _bct_orci_lengths(self):
        # Coordinate-system independent relation for BCT and ORCI
        # standard cells:
        #   a1 · a1 + a2 · a3 == a² / 2
        #   a2 · a2 + a3 · a1 == a² / 2 (BCT)
        #                     == b² / 2 (ORCI)
        #   a3 · a3 + a1 · a2 == c² / 2
        # We use these to get a, b, and c in those cases.
        prods = self.prods
        lengthsqr = 2.0 * (prods[:3] + prods[3:])
        if any(lengthsqr < 0):
            return None
        return np.sqrt(lengthsqr)

    def BCT(self):
        lengths = self._bct_orci_lengths()
        if lengths is None:
            return None
        return self._check(BCT, lengths[0], lengths[2])

    def HEX(self):
        return self._check(HEX, self.A, self.C)

    def RHL(self):
        return self._check(RHL, self.A, self.angles[0])

    def ORC(self):
        return self._check(ORC, *self.lengths)

    def ORCF(self):
        # ORCF standard cell:
        #   a2 · a3 = a²/4
        #   a3 · a1 = b²/4
        #   a1 · a2 = c²/4
        prods = self.prods
        if all(prods[3:] > 0):
            orcf_abc = 2 * np.sqrt(prods[3:])
            return self._check(ORCF, *orcf_abc)

    def ORCI(self):
        lengths = self._bct_orci_lengths()
        if lengths is None:
            return None
        return self._check(ORCI, *lengths)

    def _orcc_ab(self):
        # ORCC: a1 · a1 + a2 · a3 = a²/2
        #       a2 · a2 - a2 · a3 = b²/2
        prods = self.prods
        orcc_sqr_ab = np.empty(2)
        orcc_sqr_ab[0] = 2.0 * (prods[0] + prods[5])
        orcc_sqr_ab[1] = 2.0 * (prods[1] - prods[5])
        if all(orcc_sqr_ab > 0):
            return np.sqrt(orcc_sqr_ab)

    def ORCC(self):
        orcc_lengths_ab = self._orcc_ab()
        if orcc_lengths_ab is None:
            return None
        return self._check(ORCC, *orcc_lengths_ab, self.C)

    def MCL(self):
        return self._check(MCL, *self.lengths, self.angles[0])

    def MCLC(self):
        # MCLC is similar to ORCC:
        orcc_ab = self._orcc_ab()
        if orcc_ab is None:
            return None

        prods = self.prods
        C = self.C
        mclc_a, mclc_b = orcc_ab[::-1]  # a, b reversed wrt. ORCC
        mclc_cosa = 2.0 * prods[3] / (mclc_b * C)
        if -1 < mclc_cosa < 1:
            mclc_alpha = np.arccos(mclc_cosa) * 180 / np.pi
            if mclc_b > C:
                # XXX Temporary fix for certain otherwise
                # unrecognizable lattices.
                #
                # This error could happen if the input lattice maps to
                # something just outside the domain of conventional
                # lattices (less than the tolerance).  Our solution is to
                # propose a nearby conventional lattice instead, which
                # will then be accepted if it's close enough.
                mclc_b = 0.5 * (mclc_b + C)
                C = mclc_b
            return self._check(MCLC, mclc_a, mclc_b, C, mclc_alpha)

    def TRI(self):
        return self._check(TRI, *self.cellpar)


def all_variants():
    """For testing and examples; yield all variants of all lattices."""
    a, b, c = 3., 4., 5.
    alpha = 55.0
    yield CUB(a)
    yield FCC(a)
    yield BCC(a)
    yield TET(a, c)
    bct1 = BCT(2 * a, c)
    bct2 = BCT(a, c)
    assert bct1.variant == 'BCT1'
    assert bct2.variant == 'BCT2'

    yield bct1
    yield bct2

    yield ORC(a, b, c)

    a0 = np.sqrt(1.0 / (1 / b**2 + 1 / c**2))
    orcf1 = ORCF(0.5 * a0, b, c)
    orcf2 = ORCF(1.2 * a0, b, c)
    orcf3 = ORCF(a0, b, c)
    assert orcf1.variant == 'ORCF1'
    assert orcf2.variant == 'ORCF2'
    assert orcf3.variant == 'ORCF3'
    yield orcf1
    yield orcf2
    yield orcf3

    yield ORCI(a, b, c)
    yield ORCC(a, b, c)

    yield HEX(a, c)

    rhl1 = RHL(a, alpha=55.0)
    assert rhl1.variant == 'RHL1'
    yield rhl1

    rhl2 = RHL(a, alpha=105.0)
    assert rhl2.variant == 'RHL2'
    yield rhl2

    # With these lengths, alpha < 65 (or so) would result in a lattice that
    # could also be represented with alpha > 65, which is more conventional.
    yield MCL(a, b, c, alpha=70.0)

    mclc1 = MCLC(a, b, c, 80)
    assert mclc1.variant == 'MCLC1'
    yield mclc1
    # mclc2 has same special points as mclc1

    mclc3 = MCLC(1.8 * a, b, c * 2, 80)
    assert mclc3.variant == 'MCLC3'
    yield mclc3
    # mclc4 has same special points as mclc3

    # XXX We should add MCLC2 and MCLC4 as well.

    mclc5 = MCLC(b, b, 1.1 * b, 70)
    assert mclc5.variant == 'MCLC5'
    yield mclc5

    def get_tri(kcellpar):
        # We build the TRI lattices from cellpars of reciprocal cell
        icell = Cell.fromcellpar(kcellpar)
        cellpar = Cell(4 * icell.reciprocal()).cellpar()
        return TRI(*cellpar)

    tri1a = get_tri([1., 1.2, 1.4, 120., 110., 100.])
    assert tri1a.variant == 'TRI1a'
    yield tri1a

    tri1b = get_tri([1., 1.2, 1.4, 50., 60., 70.])
    assert tri1b.variant == 'TRI1b'
    yield tri1b

    tri2a = get_tri([1., 1.2, 1.4, 120., 110., 90.])
    assert tri2a.variant == 'TRI2a'
    yield tri2a
    tri2b = get_tri([1., 1.2, 1.4, 50., 60., 90.])
    assert tri2b.variant == 'TRI2b'
    yield tri2b

    # Choose an OBL lattice that round-trip-converts to itself.
    # The default a/b/alpha parameters result in another representation
    # of the same lattice.
    yield OBL(a=3.0, b=3.35, alpha=77.85)
    yield RECT(a, b)
    yield CRECT(a, alpha=alpha)
    yield HEX2D(a)
    yield SQR(a)
    yield LINE(a)