File: triclinic.py

package info (click to toggle)
python-ase 3.24.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 15,448 kB
  • sloc: python: 144,945; xml: 2,728; makefile: 113; javascript: 47
file content (89 lines) | stat: -rw-r--r-- 3,297 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
"""Function-like object creating triclinic lattices.

The following lattice creator is defined:
    Triclinic
"""

import numpy as np

from ase.data import reference_states as _refstate
from ase.lattice.bravais import Bravais


class TriclinicFactory(Bravais):
    "A factory for creating triclinic lattices."

    # The name of the crystal structure in ChemicalElements
    xtal_name = "triclinic"

    # The natural basis vectors of the crystal structure
    int_basis = np.array([[1, 0, 0],
                          [0, 1, 0],
                          [0, 0, 1]])
    basis_factor = 1.0

    # Converts the natural basis back to the crystallographic basis
    inverse_basis = np.array([[1, 0, 0],
                              [0, 1, 0],
                              [0, 0, 1]])
    inverse_basis_factor = 1.0

    def get_lattice_constant(self):
        """Get the lattice constant of an element with triclinic
        crystal structure."""
        if _refstate[self.atomicnumber]['symmetry'] != self.xtal_name:
            raise ValueError(('Cannot guess the %s lattice constant of'
                              + ' an element with crystal structure %s.')
                             % (self.xtal_name,
                                _refstate[self.atomicnumber]['symmetry']))
        return _refstate[self.atomicnumber].copy()

    def make_crystal_basis(self):
        """Make the basis matrix for the crystal unit cell and the system
        unit cell."""
        lattice = self.latticeconstant
        if isinstance(lattice, type({})):
            a = lattice['a']
            try:
                b = lattice['b']
            except KeyError:
                b = a * lattice['b/a']
            try:
                c = lattice['c']
            except KeyError:
                c = a * lattice['c/a']
            alpha = lattice['alpha']
            beta = lattice['beta']
            gamma = lattice['gamma']
        else:
            if len(lattice) == 6:
                (a, b, c, alpha, beta, gamma) = lattice
            else:
                raise ValueError(
                    "Improper lattice constants for triclinic crystal.")

        degree = np.pi / 180.0
        cosa = np.cos(alpha * degree)
        cosb = np.cos(beta * degree)
        sinb = np.sin(beta * degree)
        cosg = np.cos(gamma * degree)
        sing = np.sin(gamma * degree)
        lattice = np.array(
            [[a, 0, 0],
             [b * cosg, b * sing, 0],
             [c * cosb, c * (cosa - cosb * cosg) / sing,
              c * np.sqrt(sinb**2 - ((cosa - cosb * cosg) / sing)**2)]])
        self.latticeconstant = lattice
        self.miller_basis = lattice
        self.crystal_basis = (self.basis_factor *
                              np.dot(self.int_basis, lattice))
        self.basis = np.dot(self.directions, self.crystal_basis)
        assert abs(np.dot(lattice[0], lattice[1]) - a * b * cosg) < 1e-5
        assert abs(np.dot(lattice[0], lattice[2]) - a * c * cosb) < 1e-5
        assert abs(np.dot(lattice[1], lattice[2]) - b * c * cosa) < 1e-5
        assert abs(np.dot(lattice[0], lattice[0]) - a * a) < 1e-5
        assert abs(np.dot(lattice[1], lattice[1]) - b * b) < 1e-5
        assert abs(np.dot(lattice[2], lattice[2]) - c * c) < 1e-5


Triclinic = TriclinicFactory()