1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
"""Berendsen NPT dynamics class."""
import warnings
from typing import IO, Optional, Union
import numpy as np
from ase import Atoms, units
from ase.md.nvtberendsen import NVTBerendsen
class NPTBerendsen(NVTBerendsen):
def __init__(
self,
atoms: Atoms,
timestep: float,
temperature: Optional[float] = None,
*,
temperature_K: Optional[float] = None,
pressure: Optional[float] = None,
pressure_au: Optional[float] = None,
taut: float = 0.5e3 * units.fs,
taup: float = 1e3 * units.fs,
compressibility: Optional[float] = None,
compressibility_au: Optional[float] = None,
fixcm: bool = True,
trajectory: Optional[str] = None,
logfile: Optional[Union[IO, str]] = None,
loginterval: int = 1,
append_trajectory: bool = False,
):
"""Berendsen (constant N, P, T) molecular dynamics.
This dynamics scale the velocities and volumes to maintain a constant
pressure and temperature. The shape of the simulation cell is not
altered, if that is desired use Inhomogenous_NPTBerendsen.
Parameters:
atoms: Atoms object
The list of atoms.
timestep: float
The time step in ASE time units.
temperature: float
The desired temperature, in Kelvin.
temperature_K: float
Alias for ``temperature``.
pressure: float (deprecated)
The desired pressure, in bar (1 bar = 1e5 Pa). Deprecated,
use ``pressure_au`` instead.
pressure_au: float
The desired pressure, in atomic units (eV/Å^3).
taut: float
Time constant for Berendsen temperature coupling in ASE
time units. Default: 0.5 ps.
taup: float
Time constant for Berendsen pressure coupling. Default: 1 ps.
compressibility: float (deprecated)
The compressibility of the material, in bar-1. Deprecated,
use ``compressibility_au`` instead.
compressibility_au: float
The compressibility of the material, in atomic units (Å^3/eV).
fixcm: bool (optional)
If True, the position and momentum of the center of mass is
kept unperturbed. Default: True.
trajectory: Trajectory object or str (optional)
Attach trajectory object. If *trajectory* is a string a
Trajectory will be constructed. Use *None* for no
trajectory.
logfile: file object or str (optional)
If *logfile* is a string, a file with that name will be opened.
Use '-' for stdout.
loginterval: int (optional)
Only write a log line for every *loginterval* time steps.
Default: 1
append_trajectory: boolean (optional)
Defaults to False, which causes the trajectory file to be
overwriten each time the dynamics is restarted from scratch.
If True, the new structures are appended to the trajectory
file instead.
"""
NVTBerendsen.__init__(self, atoms, timestep, temperature=temperature,
temperature_K=temperature_K,
taut=taut, fixcm=fixcm, trajectory=trajectory,
logfile=logfile, loginterval=loginterval,
append_trajectory=append_trajectory)
self.taup = taup
self.pressure = self._process_pressure(pressure, pressure_au)
if compressibility is not None and compressibility_au is not None:
raise TypeError(
"Do not give both 'compressibility' and 'compressibility_au'")
if compressibility is not None:
# Specified in bar, convert to atomic units
warnings.warn(FutureWarning(
"Specify the compressibility in atomic units."))
self.set_compressibility(
compressibility_au=compressibility / (1e5 * units.Pascal))
else:
self.set_compressibility(compressibility_au=compressibility_au)
def set_taup(self, taup):
self.taup = taup
def get_taup(self):
return self.taup
def set_pressure(self, pressure=None, *, pressure_au=None,
pressure_bar=None):
self.pressure = self._process_pressure(pressure, pressure_bar,
pressure_au)
def get_pressure(self):
return self.pressure
def set_compressibility(self, *, compressibility_au):
self.compressibility = compressibility_au
def get_compressibility(self):
return self.compressibility
def set_timestep(self, timestep):
self.dt = timestep
def get_timestep(self):
return self.dt
def scale_positions_and_cell(self):
""" Do the Berendsen pressure coupling,
scale the atom position and the simulation cell."""
taupscl = self.dt / self.taup
stress = self.atoms.get_stress(voigt=False, include_ideal_gas=True)
old_pressure = -stress.trace() / 3
scl_pressure = (1.0 - taupscl * self.compressibility / 3.0 *
(self.pressure - old_pressure))
cell = self.atoms.get_cell()
cell = scl_pressure * cell
self.atoms.set_cell(cell, scale_atoms=True)
def step(self, forces=None):
""" move one timestep forward using Berenden NPT molecular dynamics."""
NVTBerendsen.scale_velocities(self)
self.scale_positions_and_cell()
# one step velocity verlet
atoms = self.atoms
if forces is None:
forces = atoms.get_forces(md=True)
p = self.atoms.get_momenta()
p += 0.5 * self.dt * forces
if self.fix_com:
# calculate the center of mass
# momentum and subtract it
psum = p.sum(axis=0) / float(len(p))
p = p - psum
self.atoms.set_positions(
self.atoms.get_positions() +
self.dt * p / self.atoms.get_masses()[:, np.newaxis])
# We need to store the momenta on the atoms before calculating
# the forces, as in a parallel Asap calculation atoms may
# migrate during force calculations, and the momenta need to
# migrate along with the atoms. For the same reason, we
# cannot use self.masses in the line above.
self.atoms.set_momenta(p)
forces = self.atoms.get_forces(md=True)
atoms.set_momenta(self.atoms.get_momenta() + 0.5 * self.dt * forces)
return forces
def _process_pressure(self, pressure, pressure_au):
"""Handle that pressure can be specified in multiple units.
For at least a transition period, Berendsen NPT dynamics in ASE can
have the pressure specified in either bar or atomic units (eV/Å^3).
Two parameters:
pressure: None or float
The original pressure specification in bar.
A warning is issued if this is not None.
pressure_au: None or float
Pressure in ev/Å^3.
Exactly one of the two pressure parameters must be different from
None, otherwise an error is issued.
Return value: Pressure in eV/Å^3.
"""
if (pressure is not None) + (pressure_au is not None) != 1:
raise TypeError("Exactly one of the parameters 'pressure',"
+ " and 'pressure_au' must"
+ " be given")
if pressure is not None:
w = ("The 'pressure' parameter is deprecated, please"
+ " specify the pressure in atomic units (eV/Å^3)"
+ " using the 'pressure_au' parameter.")
warnings.warn(FutureWarning(w))
return pressure * (1e5 * units.Pascal)
else:
return pressure_au
class Inhomogeneous_NPTBerendsen(NPTBerendsen):
"""Berendsen (constant N, P, T) molecular dynamics.
This dynamics scale the velocities and volumes to maintain a constant
pressure and temperature. The size of the unit cell is allowed to change
independently in the three directions, but the angles remain constant.
Usage: NPTBerendsen(atoms, timestep, temperature, taut, pressure, taup)
Parameters
----------
mask : tuple[int]
Specifies which axes participate in the barostat. Default (1, 1, 1)
means that all axes participate, set any of them to zero to disable
the barostat in that direction.
"""
def __init__(self, *args, mask=(1, 1, 1), **kwargs):
NPTBerendsen.__init__(self, *args, **kwargs)
self.mask = mask
def scale_positions_and_cell(self):
""" Do the Berendsen pressure coupling,
scale the atom position and the simulation cell."""
taupscl = self.dt * self.compressibility / self.taup / 3.0
stress = - self.atoms.get_stress(include_ideal_gas=True)
if stress.shape == (6,):
stress = stress[:3]
elif stress.shape == (3, 3):
stress = [stress[i][i] for i in range(3)]
else:
raise ValueError('Cannot use a stress tensor of shape ' +
str(stress.shape))
pbc = self.atoms.get_pbc()
scl_pressurex = 1.0 - taupscl * (self.pressure - stress[0]) \
* pbc[0] * self.mask[0]
scl_pressurey = 1.0 - taupscl * (self.pressure - stress[1]) \
* pbc[1] * self.mask[1]
scl_pressurez = 1.0 - taupscl * (self.pressure - stress[2]) \
* pbc[2] * self.mask[2]
cell = self.atoms.get_cell()
cell = np.array([scl_pressurex * cell[0],
scl_pressurey * cell[1],
scl_pressurez * cell[2]])
self.atoms.set_cell(cell, scale_atoms=True)
|