1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
|
import os
import numpy as np
from ase import io, units
from ase.md import MDLogger, VelocityVerlet
from ase.md.velocitydistribution import MaxwellBoltzmannDistribution
from ase.optimize import QuasiNewton
from ase.parallel import paropen, world
class MinimaHopping:
"""Implements the minima hopping method of global optimization outlined
by S. Goedecker, J. Chem. Phys. 120: 9911 (2004). Initialize with an
ASE atoms object. Optional parameters are fed through keywords.
To run multiple searches in parallel, specify the minima_traj keyword,
and have each run point to the same path.
"""
_default_settings = {
'T0': 1000., # K, initial MD 'temperature'
'beta1': 1.1, # temperature adjustment parameter
'beta2': 1.1, # temperature adjustment parameter
'beta3': 1. / 1.1, # temperature adjustment parameter
'Ediff0': 0.5, # eV, initial energy acceptance threshold
'alpha1': 0.98, # energy threshold adjustment parameter
'alpha2': 1. / 0.98, # energy threshold adjustment parameter
'mdmin': 2, # criteria to stop MD simulation (no. of minima)
'logfile': 'hop.log', # text log
'minima_threshold': 0.5, # A, threshold for identical configs
'timestep': 1.0, # fs, timestep for MD simulations
'optimizer': QuasiNewton, # local optimizer to use
'minima_traj': 'minima.traj', # storage file for minima list
'fmax': 0.05} # eV/A, max force for optimizations
def __init__(self, atoms, **kwargs):
"""Initialize with an ASE atoms object and keyword arguments."""
self._atoms = atoms
for key in kwargs:
if key not in self._default_settings:
raise RuntimeError(f'Unknown keyword: {key}')
for k, v in self._default_settings.items():
setattr(self, f'_{k}', kwargs.pop(k, v))
# when a MD sim. has passed a local minimum:
self._passedminimum = PassedMinimum()
# Misc storage.
self._previous_optimum = None
self._previous_energy = None
self._temperature = self._T0
self._Ediff = self._Ediff0
def __call__(self, totalsteps=None, maxtemp=None):
"""Run the minima hopping algorithm. Can specify stopping criteria
with total steps allowed or maximum searching temperature allowed.
If neither is specified, runs indefinitely (or until stopped by
batching software)."""
self._startup()
while True:
if (totalsteps and self._counter >= totalsteps):
self._log('msg', 'Run terminated. Step #%i reached of '
'%i allowed. Increase totalsteps if resuming.'
% (self._counter, totalsteps))
return
if (maxtemp and self._temperature >= maxtemp):
self._log('msg', 'Run terminated. Temperature is %.2f K;'
' max temperature allowed %.2f K.'
% (self._temperature, maxtemp))
return
self._previous_optimum = self._atoms.copy()
self._previous_energy = self._atoms.get_potential_energy()
self._molecular_dynamics()
self._optimize()
self._counter += 1
self._check_results()
def _startup(self):
"""Initiates a run, and determines if running from previous data or
a fresh run."""
status = np.array(-1.)
exists = self._read_minima()
if world.rank == 0:
if not exists:
# Fresh run with new minima file.
status = np.array(0.)
elif not os.path.exists(self._logfile):
# Fresh run with existing or shared minima file.
status = np.array(1.)
else:
# Must be resuming from within a working directory.
status = np.array(2.)
world.barrier()
world.broadcast(status, 0)
if status == 2.:
self._resume()
else:
self._counter = 0
self._log('init')
self._log('msg', 'Performing initial optimization.')
if status == 1.:
self._log('msg', 'Using existing minima file with %i prior '
'minima: %s' % (len(self._minima),
self._minima_traj))
self._optimize()
self._check_results()
self._counter += 1
def _resume(self):
"""Attempt to resume a run, based on information in the log
file. Note it will almost always be interrupted in the middle of
either a qn or md run or when exceeding totalsteps, so it only has
been tested in those cases currently."""
f = paropen(self._logfile, 'r')
lines = f.read().splitlines()
f.close()
self._log('msg', 'Attempting to resume stopped run.')
self._log('msg', 'Using existing minima file with %i prior '
'minima: %s' % (len(self._minima), self._minima_traj))
mdcount, qncount = 0, 0
for line in lines:
if (line[:4] == 'par:') and ('Ediff' not in line):
self._temperature = float(line.split()[1])
self._Ediff = float(line.split()[2])
elif line[:18] == 'msg: Optimization:':
qncount = int(line[19:].split('qn')[1])
elif line[:24] == 'msg: Molecular dynamics:':
mdcount = int(line[25:].split('md')[1])
self._counter = max((mdcount, qncount))
if qncount == mdcount:
# Either stopped during local optimization or terminated due to
# max steps.
self._log('msg', 'Attempting to resume at qn%05i' % qncount)
if qncount > 0:
atoms = io.read('qn%05i.traj' % (qncount - 1), index=-1)
self._previous_optimum = atoms.copy()
self._previous_energy = atoms.get_potential_energy()
if os.path.getsize('qn%05i.traj' % qncount) > 0:
atoms = io.read('qn%05i.traj' % qncount, index=-1)
else:
atoms = io.read('md%05i.traj' % qncount, index=-3)
self._atoms.positions = atoms.get_positions()
fmax = np.sqrt((atoms.get_forces() ** 2).sum(axis=1).max())
if fmax < self._fmax:
# Stopped after a qn finished.
self._log('msg', 'qn%05i fmax already less than fmax=%.3f'
% (qncount, self._fmax))
self._counter += 1
return
self._optimize()
self._counter += 1
if qncount > 0:
self._check_results()
else:
self._record_minimum()
self._log('msg', 'Found a new minimum.')
self._log('msg', 'Accepted new minimum.')
self._log('par')
elif qncount < mdcount:
# Probably stopped during molecular dynamics.
self._log('msg', 'Attempting to resume at md%05i.' % mdcount)
atoms = io.read('qn%05i.traj' % qncount, index=-1)
self._previous_optimum = atoms.copy()
self._previous_energy = atoms.get_potential_energy()
self._molecular_dynamics(resume=mdcount)
self._optimize()
self._counter += 1
self._check_results()
def _check_results(self):
"""Adjusts parameters and positions based on outputs."""
# No prior minima found?
self._read_minima()
if len(self._minima) == 0:
self._log('msg', 'Found a new minimum.')
self._log('msg', 'Accepted new minimum.')
self._record_minimum()
self._log('par')
return
# Returned to starting position?
if self._previous_optimum:
compare = ComparePositions(translate=False)
dmax = compare(self._atoms, self._previous_optimum)
self._log('msg', 'Max distance to last minimum: %.3f A' % dmax)
if dmax < self._minima_threshold:
self._log('msg', 'Re-found last minimum.')
self._temperature *= self._beta1
self._log('par')
return
# In a previously found position?
unique, dmax_closest = self._unique_minimum_position()
self._log('msg', 'Max distance to closest minimum: %.3f A' %
dmax_closest)
if not unique:
self._temperature *= self._beta2
self._log('msg', 'Found previously found minimum.')
self._log('par')
if self._previous_optimum:
self._log('msg', 'Restoring last minimum.')
self._atoms.positions = self._previous_optimum.positions
return
# Must have found a unique minimum.
self._temperature *= self._beta3
self._log('msg', 'Found a new minimum.')
self._log('par')
if (self._previous_energy is None or
(self._atoms.get_potential_energy() <
self._previous_energy + self._Ediff)):
self._log('msg', 'Accepted new minimum.')
self._Ediff *= self._alpha1
self._log('par')
self._record_minimum()
else:
self._log('msg', 'Rejected new minimum due to energy. '
'Restoring last minimum.')
self._atoms.positions = self._previous_optimum.positions
self._Ediff *= self._alpha2
self._log('par')
def _log(self, cat='msg', message=None):
"""Records the message as a line in the log file."""
if cat == 'init':
if world.rank == 0:
if os.path.exists(self._logfile):
raise RuntimeError(f'File exists: {self._logfile}')
fd = paropen(self._logfile, 'w')
fd.write('par: %12s %12s %12s\n' % ('T (K)', 'Ediff (eV)',
'mdmin'))
fd.write('ene: %12s %12s %12s\n' % ('E_current', 'E_previous',
'Difference'))
fd.close()
return
fd = paropen(self._logfile, 'a')
if cat == 'msg':
line = f'msg: {message}'
elif cat == 'par':
line = ('par: %12.4f %12.4f %12i' %
(self._temperature, self._Ediff, self._mdmin))
elif cat == 'ene':
current = self._atoms.get_potential_energy()
if self._previous_optimum:
previous = self._previous_energy
line = ('ene: %12.5f %12.5f %12.5f' %
(current, previous, current - previous))
else:
line = ('ene: %12.5f' % current)
fd.write(line + '\n')
fd.close()
def _optimize(self):
"""Perform an optimization."""
self._atoms.set_momenta(np.zeros(self._atoms.get_momenta().shape))
with self._optimizer(self._atoms,
trajectory='qn%05i.traj' % self._counter,
logfile='qn%05i.log' % self._counter) as opt:
self._log('msg', 'Optimization: qn%05i' % self._counter)
opt.run(fmax=self._fmax)
self._log('ene')
def _record_minimum(self):
"""Adds the current atoms configuration to the minima list."""
with io.Trajectory(self._minima_traj, 'a') as traj:
traj.write(self._atoms)
self._read_minima()
self._log('msg', 'Recorded minima #%i.' % (len(self._minima) - 1))
def _read_minima(self):
"""Reads in the list of minima from the minima file."""
exists = os.path.exists(self._minima_traj)
if exists:
empty = os.path.getsize(self._minima_traj) == 0
if not empty:
with io.Trajectory(self._minima_traj, 'r') as traj:
self._minima = [atoms for atoms in traj]
else:
self._minima = []
return True
else:
self._minima = []
return False
def _molecular_dynamics(self, resume=None):
"""Performs a molecular dynamics simulation, until mdmin is
exceeded. If resuming, the file number (md%05i) is expected."""
self._log('msg', 'Molecular dynamics: md%05i' % self._counter)
mincount = 0
energies, oldpositions = [], []
thermalized = False
if resume:
self._log('msg', 'Resuming MD from md%05i.traj' % resume)
if os.path.getsize('md%05i.traj' % resume) == 0:
self._log('msg', 'md%05i.traj is empty. Resuming from '
'qn%05i.traj.' % (resume, resume - 1))
atoms = io.read('qn%05i.traj' % (resume - 1), index=-1)
else:
with io.Trajectory('md%05i.traj' % resume, 'r') as images:
for atoms in images:
energies.append(atoms.get_potential_energy())
oldpositions.append(atoms.positions.copy())
passedmin = self._passedminimum(energies)
if passedmin:
mincount += 1
self._atoms.set_momenta(atoms.get_momenta())
thermalized = True
self._atoms.positions = atoms.get_positions()
self._log('msg', 'Starting MD with %i existing energies.' %
len(energies))
if not thermalized:
MaxwellBoltzmannDistribution(self._atoms,
temperature_K=self._temperature,
force_temp=True)
traj = io.Trajectory('md%05i.traj' % self._counter, 'a',
self._atoms)
dyn = VelocityVerlet(self._atoms, timestep=self._timestep * units.fs)
log = MDLogger(dyn, self._atoms, 'md%05i.log' % self._counter,
header=True, stress=False, peratom=False)
with traj, dyn, log:
dyn.attach(log, interval=1)
dyn.attach(traj, interval=1)
while mincount < self._mdmin:
dyn.run(1)
energies.append(self._atoms.get_potential_energy())
passedmin = self._passedminimum(energies)
if passedmin:
mincount += 1
oldpositions.append(self._atoms.positions.copy())
# Reset atoms to minimum point.
self._atoms.positions = oldpositions[passedmin[0]]
def _unique_minimum_position(self):
"""Identifies if the current position of the atoms, which should be
a local minima, has been found before."""
unique = True
dmax_closest = 99999.
compare = ComparePositions(translate=True)
self._read_minima()
for minimum in self._minima:
dmax = compare(minimum, self._atoms)
if dmax < self._minima_threshold:
unique = False
if dmax < dmax_closest:
dmax_closest = dmax
return unique, dmax_closest
class ComparePositions:
"""Class that compares the atomic positions between two ASE atoms
objects. Returns the maximum distance that any atom has moved, assuming
all atoms of the same element are indistinguishable. If translate is
set to True, allows for arbitrary translations within the unit cell,
as well as translations across any periodic boundary conditions. When
called, returns the maximum displacement of any one atom."""
def __init__(self, translate=True):
self._translate = translate
def __call__(self, atoms1, atoms2):
atoms1 = atoms1.copy()
atoms2 = atoms2.copy()
if not self._translate:
dmax = self. _indistinguishable_compare(atoms1, atoms2)
else:
dmax = self._translated_compare(atoms1, atoms2)
return dmax
def _translated_compare(self, atoms1, atoms2):
"""Moves the atoms around and tries to pair up atoms, assuming any
atoms with the same symbol are indistinguishable, and honors
periodic boundary conditions (for example, so that an atom at
(0.1, 0., 0.) correctly is found to be close to an atom at
(7.9, 0., 0.) if the atoms are in an orthorhombic cell with
x-dimension of 8. Returns dmax, the maximum distance between any
two atoms in the optimal configuration."""
atoms1.set_constraint()
atoms2.set_constraint()
for index in range(3):
assert atoms1.pbc[index] == atoms2.pbc[index]
least = self._get_least_common(atoms1)
indices1 = [atom.index for atom in atoms1 if atom.symbol == least[0]]
indices2 = [atom.index for atom in atoms2 if atom.symbol == least[0]]
# Make comparison sets from atoms2, which contain repeated atoms in
# all pbc's and bring the atom listed in indices2 to (0,0,0)
comparisons = []
repeat = []
for bc in atoms2.pbc:
if bc:
repeat.append(3)
else:
repeat.append(1)
repeated = atoms2.repeat(repeat)
moved_cell = atoms2.cell * atoms2.pbc
for moved in moved_cell:
repeated.translate(-moved)
repeated.set_cell(atoms2.cell)
for index in indices2:
comparison = repeated.copy()
comparison.translate(-atoms2[index].position)
comparisons.append(comparison)
# Bring the atom listed in indices1 to (0,0,0) [not whole list]
standard = atoms1.copy()
standard.translate(-atoms1[indices1[0]].position)
# Compare the standard to the comparison sets.
dmaxes = []
for comparison in comparisons:
dmax = self._indistinguishable_compare(standard, comparison)
dmaxes.append(dmax)
return min(dmaxes)
def _get_least_common(self, atoms):
"""Returns the least common element in atoms. If more than one,
returns the first encountered."""
symbols = [atom.symbol for atom in atoms]
least = ['', np.inf]
for element in set(symbols):
count = symbols.count(element)
if count < least[1]:
least = [element, count]
return least
def _indistinguishable_compare(self, atoms1, atoms2):
"""Finds each atom in atoms1's nearest neighbor with the same
chemical symbol in atoms2. Return dmax, the farthest distance an
individual atom differs by."""
atoms2 = atoms2.copy() # allow deletion
atoms2.set_constraint()
dmax = 0.
for atom1 in atoms1:
closest = [np.nan, np.inf]
for index, atom2 in enumerate(atoms2):
if atom2.symbol == atom1.symbol:
d = np.linalg.norm(atom1.position - atom2.position)
if d < closest[1]:
closest = [index, d]
if closest[1] > dmax:
dmax = closest[1]
del atoms2[closest[0]]
return dmax
class PassedMinimum:
"""Simple routine to find if a minimum in the potential energy surface
has been passed. In its default settings, a minimum is found if the
sequence ends with two downward points followed by two upward points.
Initialize with n_down and n_up, integer values of the number of up and
down points. If it has successfully determined it passed a minimum, it
returns the value (energy) of that minimum and the number of positions
back it occurred, otherwise returns None."""
def __init__(self, n_down=2, n_up=2):
self._ndown = n_down
self._nup = n_up
def __call__(self, energies):
if len(energies) < (self._nup + self._ndown + 1):
return None
status = True
index = -1
for _ in range(self._nup):
if energies[index] < energies[index - 1]:
status = False
index -= 1
for _ in range(self._ndown):
if energies[index] > energies[index - 1]:
status = False
index -= 1
if status:
return (-self._nup - 1), energies[-self._nup - 1]
class MHPlot:
"""Makes a plot summarizing the output of the MH algorithm from the
specified rundirectory. If no rundirectory is supplied, uses the
current directory."""
def __init__(self, rundirectory=None, logname='hop.log'):
if not rundirectory:
rundirectory = os.getcwd()
self._rundirectory = rundirectory
self._logname = logname
self._read_log()
self._fig, self._ax = self._makecanvas()
self._plot_data()
def get_figure(self):
"""Returns the matplotlib figure object."""
return self._fig
def save_figure(self, filename):
"""Saves the file to the specified path, with any allowed
matplotlib extension (e.g., .pdf, .png, etc.)."""
self._fig.savefig(filename)
def _read_log(self):
"""Reads relevant parts of the log file."""
data = [] # format: [energy, status, temperature, ediff]
with open(os.path.join(self._rundirectory, self._logname)) as fd:
lines = fd.read().splitlines()
step_almost_over = False
step_over = False
for line in lines:
if line.startswith('msg: Molecular dynamics:'):
status = 'performing MD'
elif line.startswith('msg: Optimization:'):
status = 'performing QN'
elif line.startswith('ene:'):
status = 'local optimum reached'
energy = floatornan(line.split()[1])
elif line.startswith('msg: Accepted new minimum.'):
status = 'accepted'
step_almost_over = True
elif line.startswith('msg: Found previously found minimum.'):
status = 'previously found minimum'
step_almost_over = True
elif line.startswith('msg: Re-found last minimum.'):
status = 'previous minimum'
step_almost_over = True
elif line.startswith('msg: Rejected new minimum'):
status = 'rejected'
step_almost_over = True
elif line.startswith('par: '):
temperature = floatornan(line.split()[1])
ediff = floatornan(line.split()[2])
if step_almost_over:
step_over = True
step_almost_over = False
if step_over:
data.append([energy, status, temperature, ediff])
step_over = False
if data[-1][1] != status:
data.append([np.nan, status, temperature, ediff])
self._data = data
def _makecanvas(self):
from matplotlib import pyplot
from matplotlib.ticker import ScalarFormatter
fig = pyplot.figure(figsize=(6., 8.))
lm, rm, bm, tm = 0.22, 0.02, 0.05, 0.04
vg1 = 0.01 # between adjacent energy plots
vg2 = 0.03 # between different types of plots
ratio = 2. # size of an energy plot to a parameter plot
figwidth = 1. - lm - rm
totalfigheight = 1. - bm - tm - vg1 - 2. * vg2
parfigheight = totalfigheight / (2. * ratio + 2)
epotheight = ratio * parfigheight
ax1 = fig.add_axes((lm, bm, figwidth, epotheight))
ax2 = fig.add_axes((lm, bm + epotheight + vg1,
figwidth, epotheight))
for ax in [ax1, ax2]:
ax.yaxis.set_major_formatter(ScalarFormatter(useOffset=False))
ediffax = fig.add_axes((lm, bm + 2. * epotheight + vg1 + vg2,
figwidth, parfigheight))
tempax = fig.add_axes((lm, (bm + 2 * epotheight + vg1 + 2 * vg2 +
parfigheight), figwidth, parfigheight))
for ax in [ax2, tempax, ediffax]:
ax.set_xticklabels([])
ax1.set_xlabel('step')
tempax.set_ylabel('$T$, K')
ediffax.set_ylabel(r'$E_\mathrm{diff}$, eV')
for ax in [ax1, ax2]:
ax.set_ylabel(r'$E_\mathrm{pot}$, eV')
ax = CombinedAxis(ax1, ax2, tempax, ediffax)
self._set_zoomed_range(ax)
ax1.spines['top'].set_visible(False)
ax2.spines['bottom'].set_visible(False)
return fig, ax
def _set_zoomed_range(self, ax):
"""Try to intelligently set the range for the zoomed-in part of the
graph."""
energies = [line[0] for line in self._data
if not np.isnan(line[0])]
dr = max(energies) - min(energies)
if dr == 0.:
dr = 1.
ax.set_ax1_range((min(energies) - 0.2 * dr,
max(energies) + 0.2 * dr))
def _plot_data(self):
for step, line in enumerate(self._data):
self._plot_energy(step, line)
self._plot_qn(step, line)
self._plot_md(step, line)
self._plot_parameters()
self._ax.set_xlim(self._ax.ax1.get_xlim())
def _plot_energy(self, step, line):
"""Plots energy and annotation for acceptance."""
energy, status = line[0], line[1]
if np.isnan(energy):
return
self._ax.plot([step, step + 0.5], [energy] * 2, '-',
color='k', linewidth=2.)
if status == 'accepted':
self._ax.text(step + 0.51, energy, r'$\checkmark$')
elif status == 'rejected':
self._ax.text(step + 0.51, energy, r'$\Uparrow$', color='red')
elif status == 'previously found minimum':
self._ax.text(step + 0.51, energy, r'$\hookleftarrow$',
color='red', va='center')
elif status == 'previous minimum':
self._ax.text(step + 0.51, energy, r'$\leftarrow$',
color='red', va='center')
def _plot_md(self, step, line):
"""Adds a curved plot of molecular dynamics trajectory."""
if step == 0:
return
energies = [self._data[step - 1][0]]
file = os.path.join(self._rundirectory, 'md%05i.traj' % step)
with io.Trajectory(file, 'r') as traj:
for atoms in traj:
energies.append(atoms.get_potential_energy())
xi = step - 1 + .5
if len(energies) > 2:
xf = xi + (step + 0.25 - xi) * len(energies) / (len(energies) - 2.)
else:
xf = step
if xf > (step + .75):
xf = step
self._ax.plot(np.linspace(xi, xf, num=len(energies)), energies,
'-k')
def _plot_qn(self, index, line):
"""Plots a dashed vertical line for the optimization."""
if line[1] == 'performing MD':
return
file = os.path.join(self._rundirectory, 'qn%05i.traj' % index)
if os.path.getsize(file) == 0:
return
with io.Trajectory(file, 'r') as traj:
energies = [traj[0].get_potential_energy(),
traj[-1].get_potential_energy()]
if index > 0:
file = os.path.join(self._rundirectory, 'md%05i.traj' % index)
atoms = io.read(file, index=-3)
energies[0] = atoms.get_potential_energy()
self._ax.plot([index + 0.25] * 2, energies, ':k')
def _plot_parameters(self):
"""Adds a plot of temperature and Ediff to the plot."""
steps, Ts, ediffs = [], [], []
for step, line in enumerate(self._data):
steps.extend([step + 0.5, step + 1.5])
Ts.extend([line[2]] * 2)
ediffs.extend([line[3]] * 2)
self._ax.tempax.plot(steps, Ts)
self._ax.ediffax.plot(steps, ediffs)
for ax in [self._ax.tempax, self._ax.ediffax]:
ylim = ax.get_ylim()
yrange = ylim[1] - ylim[0]
ax.set_ylim((ylim[0] - 0.1 * yrange, ylim[1] + 0.1 * yrange))
def floatornan(value):
"""Converts the argument into a float if possible, np.nan if not."""
try:
output = float(value)
except ValueError:
output = np.nan
return output
class CombinedAxis:
"""Helper class for MHPlot to plot on split y axis and adjust limits
simultaneously."""
def __init__(self, ax1, ax2, tempax, ediffax):
self.ax1 = ax1
self.ax2 = ax2
self.tempax = tempax
self.ediffax = ediffax
self._ymax = -np.inf
def set_ax1_range(self, ylim):
self._ax1_ylim = ylim
self.ax1.set_ylim(ylim)
def plot(self, *args, **kwargs):
self.ax1.plot(*args, **kwargs)
self.ax2.plot(*args, **kwargs)
# Re-adjust yrange
for yvalue in args[1]:
if yvalue > self._ymax:
self._ymax = yvalue
self.ax1.set_ylim(self._ax1_ylim)
self.ax2.set_ylim((self._ax1_ylim[1], self._ymax))
def set_xlim(self, *args):
self.ax1.set_xlim(*args)
self.ax2.set_xlim(*args)
self.tempax.set_xlim(*args)
self.ediffax.set_xlim(*args)
def text(self, *args, **kwargs):
y = args[1]
if y < self._ax1_ylim[1]:
ax = self.ax1
else:
ax = self.ax2
ax.text(*args, **kwargs)
|