1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
|
"""
Implementation of the Precon abstract base class and subclasses
"""
import copy
import sys
import time
import warnings
from abc import ABC, abstractmethod
import numpy as np
from scipy import sparse
from scipy.interpolate import CubicSpline
from scipy.sparse.linalg import spsolve
import ase.units as units
import ase.utils.ff as ff
from ase.constraints import FixAtoms
from ase.filters import Filter
from ase.geometry import find_mic
from ase.neighborlist import neighbor_list
from ase.optimize.precon.neighbors import (
estimate_nearest_neighbour_distance,
get_neighbours,
)
from ase.utils import longsum, tokenize_version
try:
import pyamg
except ImportError:
have_pyamg = False
else:
have_pyamg = True
def create_pyamg_solver(P, max_levels=15):
if not have_pyamg:
raise RuntimeError(
'pyamg not available: install with `pip install pyamg`')
filter_key = 'filter'
if tokenize_version(pyamg.__version__) >= tokenize_version('4.2.1'):
filter_key = 'filter_entries'
return pyamg.smoothed_aggregation_solver(
P, B=None,
strength=('symmetric', {'theta': 0.0}),
smooth=(
'jacobi', {filter_key: True, 'weighting': 'local'}),
improve_candidates=([('block_gauss_seidel',
{'sweep': 'symmetric', 'iterations': 4})] +
[None] * (max_levels - 1)),
aggregate='standard',
presmoother=('block_gauss_seidel',
{'sweep': 'symmetric', 'iterations': 1}),
postsmoother=('block_gauss_seidel',
{'sweep': 'symmetric', 'iterations': 1}),
max_levels=max_levels,
max_coarse=300,
coarse_solver='pinv')
THz = 1e12 * 1. / units.s
class Precon(ABC):
@abstractmethod
def make_precon(self, atoms, reinitialize=None):
"""
Create a preconditioner matrix based on the passed set of atoms.
Creates a general-purpose preconditioner for use with optimization
algorithms, based on examining distances between pairs of atoms in the
lattice. The matrix will be stored in the attribute self.P and
returned.
Args:
atoms: the Atoms object used to create the preconditioner.
reinitialize: if True, parameters of the preconditioner
will be recalculated before the preconditioner matrix is
created. If False, they will be calculated only when they
do not currently have a value (ie, the first time this
function is called).
Returns:
P: A sparse scipy csr_matrix. BE AWARE that using
numpy.dot() with sparse matrices will result in
errors/incorrect results - use the .dot method directly
on the matrix instead.
"""
...
@abstractmethod
def Pdot(self, x):
"""
Return the result of applying P to a vector x
"""
...
def dot(self, x, y):
"""
Return the preconditioned dot product <P x, y>
Uses 128-bit floating point math for vector dot products
"""
return longsum(self.Pdot(x) * y)
def norm(self, x):
"""
Return the P-norm of x, where |x|_P = sqrt(<Px, x>)
"""
return np.sqrt(self.dot(x, x))
def vdot(self, x, y):
return self.dot(x.reshape(-1),
y.reshape(-1))
@abstractmethod
def solve(self, x):
"""
Solve the (sparse) linear system P x = y and return y
"""
...
def apply(self, forces, atoms):
"""
Convenience wrapper that combines make_precon() and solve()
Parameters
----------
forces: array
(len(atoms)*3) array of input forces
atoms: ase.atoms.Atoms
Returns
-------
precon_forces: array
(len(atoms), 3) array of preconditioned forces
residual: float
inf-norm of original forces, i.e. maximum absolute force
"""
self.make_precon(atoms)
residual = np.linalg.norm(forces, np.inf)
precon_forces = self.solve(forces)
return precon_forces, residual
@abstractmethod
def copy(self):
...
@abstractmethod
def asarray(self):
"""
Array representation of preconditioner, as a dense matrix
"""
...
class Logfile:
def __init__(self, logfile=None):
if isinstance(logfile, str):
if logfile == "-":
logfile = sys.stdout
else:
logfile = open(logfile, "a")
self.logfile = logfile
def write(self, *args):
if self.logfile is None:
return
self.logfile.write(*args)
class SparsePrecon(Precon):
def __init__(self, r_cut=None, r_NN=None,
mu=None, mu_c=None,
dim=3, c_stab=0.1, force_stab=False,
reinitialize=False, array_convention='C',
solver="auto", solve_tol=1e-8,
apply_positions=True, apply_cell=True,
estimate_mu_eigmode=False, logfile=None, rng=None,
neighbour_list=neighbor_list):
"""Initialise a preconditioner object based on passed parameters.
Parameters:
r_cut: float. This is a cut-off radius. The preconditioner matrix
will be created by considering pairs of atoms that are within a
distance r_cut of each other. For a regular lattice, this is
usually taken somewhere between the first- and second-nearest
neighbour distance. If r_cut is not provided, default is
2 * r_NN (see below)
r_NN: nearest neighbour distance. If not provided, this is
calculated
from input structure.
mu: float
energy scale for position degreees of freedom. If `None`, mu
is precomputed using finite difference derivatives.
mu_c: float
energy scale for cell degreees of freedom. Also precomputed
if None.
estimate_mu_eigmode:
If True, estimates mu based on the lowest eigenmodes of
unstabilised preconditioner. If False it uses the sine based
approach.
dim: int; dimensions of the problem
c_stab: float. The diagonal of the preconditioner matrix will have
a stabilisation constant added, which will be the value of
c_stab times mu.
force_stab:
If True, always add the stabilisation to diagnonal, regardless
of the presence of fixed atoms.
reinitialize: if True, the value of mu will be recalculated when
self.make_precon is called. This can be overridden in specific
cases with reinitialize argument in self.make_precon. If it
is set to True here, the value passed for mu will be
irrelevant unless reinitialize is set to False the first time
make_precon is called.
array_convention: Either 'C' or 'F' for Fortran; this will change
the preconditioner to reflect the ordering of the indices in
the vector it will operate on. The C convention assumes the
vector will be arranged atom-by-atom (ie [x1, y1, z1, x2, ...])
while the F convention assumes it will be arranged component
by component (ie [x1, x2, ..., y1, y2, ...]).
solver: One of "auto", "direct" or "pyamg", specifying whether to
use a direct sparse solver or PyAMG to solve P x = y.
Default is "auto" which uses PyAMG if available, falling
back to sparse solver if not. solve_tol: tolerance used for
PyAMG sparse linear solver, if available.
apply_positions: bool
if True, apply preconditioner to position DoF
apply_cell: bool
if True, apply preconditioner to cell DoF
logfile: file object or str
If *logfile* is a string, a file with that name will be opened.
Use '-' for stdout.
rng: None or np.random.RandomState instance
Random number generator to use for initialising pyamg solver
neighbor_list: function (optional). Optionally replace the built-in
ASE neighbour list with an alternative with the same call
signature, e.g. `matscipy.neighbours.neighbour_list`.
Raises:
ValueError for problem with arguments
"""
self.r_NN = r_NN
self.r_cut = r_cut
self.mu = mu
self.mu_c = mu_c
self.estimate_mu_eigmode = estimate_mu_eigmode
self.c_stab = c_stab
self.force_stab = force_stab
self.array_convention = array_convention
self.reinitialize = reinitialize
self.P = None
self.old_positions = None
use_pyamg = False
if solver == "auto":
use_pyamg = have_pyamg
elif solver == "direct":
use_pyamg = False
elif solver == "pyamg":
if not have_pyamg:
raise RuntimeError("solver='pyamg', PyAMG can't be imported!")
use_pyamg = True
else:
raise ValueError('unknown solver - '
'should be "auto", "direct" or "pyamg"')
self.use_pyamg = use_pyamg
self.solve_tol = solve_tol
self.apply_positions = apply_positions
self.apply_cell = apply_cell
if dim < 1:
raise ValueError('Dimension must be at least 1')
self.dim = dim
self.logfile = Logfile(logfile)
if rng is None:
rng = np.random.RandomState()
self.rng = rng
self.neighbor_list = neighbor_list
def copy(self):
return copy.deepcopy(self)
def Pdot(self, x):
return self.P.dot(x)
def solve(self, x):
start_time = time.time()
if self.use_pyamg and have_pyamg:
y = self.ml.solve(x, x0=self.rng.random(self.P.shape[0]),
tol=self.solve_tol,
accel='cg',
maxiter=300,
cycle='W')
else:
y = spsolve(self.P, x)
self.logfile.write(
f'--- Precon applied in {(time.time() - start_time)} seconds ---\n')
return y
def estimate_mu(self, atoms, H=None):
r"""Estimate optimal preconditioner coefficient \mu
\mu is estimated from a numerical solution of
[dE(p+v) - dE(p)] \cdot v = \mu < P1 v, v >
with perturbation
v(x,y,z) = H P_lowest_nonzero_eigvec(x, y, z)
or
v(x,y,z) = H (sin(x / Lx), sin(y / Ly), sin(z / Lz))
After the optimal \mu is found, self.mu will be set to its value.
If `atoms` is an instance of Filter an additional \mu_c
will be computed for the cell degrees of freedom .
Args:
atoms: Atoms object for initial system
H: 3x3 array or None
Magnitude of deformation to apply.
Default is 1e-2*rNN*np.eye(3)
Returns:
mu : float
mu_c : float or None
"""
logfile = self.logfile
if self.dim != 3:
raise ValueError('Automatic calculation of mu only possible for '
'three-dimensional preconditioners. Try setting '
'mu manually instead.')
if self.r_NN is None:
self.r_NN = estimate_nearest_neighbour_distance(atoms,
self.neighbor_list)
# deformation matrix, default is diagonal
if H is None:
H = 1e-2 * self.r_NN * np.eye(3)
# compute perturbation
p = atoms.get_positions()
if self.estimate_mu_eigmode:
self.mu = 1.0
self.mu_c = 1.0
c_stab = self.c_stab
self.c_stab = 0.0
if isinstance(atoms, Filter):
n = len(atoms.atoms)
else:
n = len(atoms)
self._make_sparse_precon(atoms, initial_assembly=True)
self.P = self.P[:3 * n, :3 * n]
eigvals, eigvecs = sparse.linalg.eigsh(self.P, k=4, which='SM')
logfile.write('estimate_mu(): lowest 4 eigvals = %f %f %f %f\n' %
(eigvals[0], eigvals[1], eigvals[2], eigvals[3]))
# check eigenvalues
if any(eigvals[0:3] > 1e-6):
raise ValueError('First 3 eigenvalues of preconditioner matrix'
'do not correspond to translational modes.')
elif eigvals[3] < 1e-6:
raise ValueError('Fourth smallest eigenvalue of '
'preconditioner matrix '
'is too small, increase r_cut.')
x = np.zeros(n)
for i in range(n):
x[i] = eigvecs[:, 3][3 * i]
x = x / np.linalg.norm(x)
if x[0] < 0:
x = -x
v = np.zeros(3 * len(atoms))
for i in range(n):
v[3 * i] = x[i]
v[3 * i + 1] = x[i]
v[3 * i + 2] = x[i]
v = v / np.linalg.norm(v)
v = v.reshape((-1, 3))
self.c_stab = c_stab
else:
Lx, Ly, Lz = (p[:, i].max() - p[:, i].min() for i in range(3))
logfile.write('estimate_mu(): Lx=%.1f Ly=%.1f Lz=%.1f\n' %
(Lx, Ly, Lz))
x, y, z = p.T
# sine_vr = [np.sin(x/Lx), np.sin(y/Ly), np.sin(z/Lz)], but we need
# to take into account the possibility that one of Lx/Ly/Lz is
# zero.
sine_vr = [x, y, z]
for i, L in enumerate([Lx, Ly, Lz]):
if L == 0:
warnings.warn(
'Cell length L[%d] == 0. Setting H[%d,%d] = 0.' %
(i, i, i))
H[i, i] = 0.0
else:
sine_vr[i] = np.sin(sine_vr[i] / L)
v = np.dot(H, sine_vr).T
natoms = len(atoms)
if isinstance(atoms, Filter):
natoms = len(atoms.atoms)
eps = H / self.r_NN
v[natoms:, :] = eps
v1 = v.reshape(-1)
# compute LHS
dE_p = -atoms.get_forces().reshape(-1)
atoms_v = atoms.copy()
atoms_v.calc = atoms.calc
if isinstance(atoms, Filter):
atoms_v = atoms.__class__(atoms_v)
if hasattr(atoms, 'constant_volume'):
atoms_v.constant_volume = atoms.constant_volume
atoms_v.set_positions(p + v)
dE_p_plus_v = -atoms_v.get_forces().reshape(-1)
# compute left hand side
LHS = (dE_p_plus_v - dE_p) * v1
# assemble P with \mu = 1
self.mu = 1.0
self.mu_c = 1.0
self._make_sparse_precon(atoms, initial_assembly=True)
# compute right hand side
RHS = self.P.dot(v1) * v1
# use partial sums to compute separate mu for positions and cell DoFs
self.mu = longsum(LHS[:3 * natoms]) / longsum(RHS[:3 * natoms])
if self.mu < 1.0:
logfile.write('estimate_mu(): mu (%.3f) < 1.0, '
'capping at mu=1.0' % self.mu)
self.mu = 1.0
if isinstance(atoms, Filter):
self.mu_c = longsum(LHS[3 * natoms:]) / longsum(RHS[3 * natoms:])
if self.mu_c < 1.0:
logfile.write('estimate_mu(): mu_c (%.3f) < 1.0, '
'capping at mu_c=1.0\n' % self.mu_c)
self.mu_c = 1.0
logfile.write('estimate_mu(): mu=%r, mu_c=%r\n' %
(self.mu, self.mu_c))
self.P = None # force a rebuild with new mu (there may be fixed atoms)
return (self.mu, self.mu_c)
def asarray(self):
return np.array(self.P.todense())
def one_dim_to_ndim(self, csc_P, N):
"""
Expand an N x N precon matrix to self.dim*N x self.dim * N
Args:
csc_P (sparse matrix): N x N sparse matrix, in CSC format
"""
start_time = time.time()
if self.dim == 1:
P = csc_P
elif self.array_convention == 'F':
csc_P = csc_P.tocsr()
P = csc_P
for _ in range(self.dim - 1):
P = sparse.block_diag((P, csc_P)).tocsr()
else:
# convert back to triplet and read the arrays
csc_P = csc_P.tocoo()
i = csc_P.row * self.dim
j = csc_P.col * self.dim
z = csc_P.data
# N-dimensionalise, interlaced coordinates
I = np.hstack([i + d for d in range(self.dim)])
J = np.hstack([j + d for d in range(self.dim)])
Z = np.hstack([z for _ in range(self.dim)])
P = sparse.csc_matrix((Z, (I, J)),
shape=(self.dim * N, self.dim * N))
P = P.tocsr()
self.logfile.write(
f'--- N-dim precon created in {(time.time() - start_time)} s ---\n')
return P
def create_solver(self):
if self.use_pyamg and have_pyamg:
start_time = time.time()
self.ml = create_pyamg_solver(self.P)
self.logfile.write(
f'--- multi grid solver created in {(time.time() - start_time)}'
' ---\n')
class SparseCoeffPrecon(SparsePrecon):
def _make_sparse_precon(self, atoms, initial_assembly=False,
force_stab=False):
"""Create a sparse preconditioner matrix based on the passed atoms.
Creates a general-purpose preconditioner for use with optimization
algorithms, based on examining distances between pairs of atoms in the
lattice. The matrix will be stored in the attribute self.P and
returned. Note that this function will use self.mu, whatever it is.
Args:
atoms: the Atoms object used to create the preconditioner.
Returns:
A scipy.sparse.csr_matrix object, representing a d*N by d*N matrix
(where N is the number of atoms, and d is the value of self.dim).
BE AWARE that using numpy.dot() with this object will result in
errors/incorrect results - use the .dot method directly on the
sparse matrix instead.
"""
logfile = self.logfile
logfile.write('creating sparse precon: initial_assembly=%r, '
'force_stab=%r, apply_positions=%r, apply_cell=%r\n' %
(initial_assembly, force_stab, self.apply_positions,
self.apply_cell))
N = len(atoms)
diag_i = np.arange(N, dtype=int)
start_time = time.time()
if self.apply_positions:
# compute neighbour list
i, j, rij, fixed_atoms = get_neighbours(
atoms, self.r_cut,
neighbor_list=self.neighbor_list)
logfile.write(
f'--- neighbour list created in {(time.time() - start_time)} s '
'--- \n')
# compute entries in triplet format: without the constraints
start_time = time.time()
coeff = self.get_coeff(rij)
diag_coeff = np.bincount(i, -coeff, minlength=N).astype(np.float64)
if force_stab or len(fixed_atoms) == 0:
logfile.write('adding stabilisation to precon')
diag_coeff += self.mu * self.c_stab
else:
diag_coeff = np.ones(N)
# precon is mu_c * identity for cell DoF
if isinstance(atoms, Filter):
if self.apply_cell:
diag_coeff[-3:] = self.mu_c
else:
diag_coeff[-3:] = 1.0
logfile.write(
f'--- computed triplet format in {(time.time() - start_time)} s '
'---\n')
if self.apply_positions and not initial_assembly:
# apply the constraints
start_time = time.time()
mask = np.ones(N)
mask[fixed_atoms] = 0.0
coeff *= mask[i] * mask[j]
diag_coeff[fixed_atoms] = 1.0
logfile.write(
f'--- applied fixed_atoms in {(time.time() - start_time)} s '
'---\n')
if self.apply_positions:
# remove zeros
start_time = time.time()
inz = np.nonzero(coeff)
i = np.hstack((i[inz], diag_i))
j = np.hstack((j[inz], diag_i))
coeff = np.hstack((coeff[inz], diag_coeff))
logfile.write(
f'--- remove zeros in {(time.time() - start_time)} s '
'---\n')
else:
i = diag_i
j = diag_i
coeff = diag_coeff
# create an N x N precon matrix in compressed sparse column (CSC) format
start_time = time.time()
csc_P = sparse.csc_matrix((coeff, (i, j)), shape=(N, N))
logfile.write(
f'--- created CSC matrix in {(time.time() - start_time)} s '
'---\n')
self.P = self.one_dim_to_ndim(csc_P, N)
self.create_solver()
def make_precon(self, atoms, reinitialize=None):
if self.r_NN is None:
self.r_NN = estimate_nearest_neighbour_distance(atoms,
self.neighbor_list)
if self.r_cut is None:
# This is the first time this function has been called, and no
# cutoff radius has been specified, so calculate it automatically.
self.r_cut = 2.0 * self.r_NN
elif self.r_cut < self.r_NN:
warning = ('WARNING: r_cut (%.2f) < r_NN (%.2f), '
'increasing to 1.1*r_NN = %.2f' % (self.r_cut,
self.r_NN,
1.1 * self.r_NN))
warnings.warn(warning)
self.r_cut = 1.1 * self.r_NN
if reinitialize is None:
# The caller has not specified whether or not to recalculate mu,
# so the Precon's setting is used.
reinitialize = self.reinitialize
if self.mu is None:
# Regardless of what the caller has specified, if we don't
# currently have a value of mu, then we need one.
reinitialize = True
if reinitialize:
self.estimate_mu(atoms)
if self.P is not None:
real_atoms = atoms
if isinstance(atoms, Filter):
real_atoms = atoms.atoms
if self.old_positions is None:
self.old_positions = real_atoms.positions
displacement, _ = find_mic(real_atoms.positions -
self.old_positions,
real_atoms.cell, real_atoms.pbc)
self.old_positions = real_atoms.get_positions()
max_abs_displacement = abs(displacement).max()
self.logfile.write('max(abs(displacements)) = %.2f A (%.2f r_NN)' %
(max_abs_displacement,
max_abs_displacement / self.r_NN))
if max_abs_displacement < 0.5 * self.r_NN:
return
start_time = time.time()
self._make_sparse_precon(atoms, force_stab=self.force_stab)
self.logfile.write(
f'--- Precon created in {(time.time() - start_time)} seconds '
'--- \n')
@abstractmethod
def get_coeff(self, r):
...
class Pfrommer(Precon):
"""
Use initial guess for inverse Hessian from Pfrommer et al. as a
simple preconditioner
J. Comput. Phys. vol 131 p233-240 (1997)
"""
def __init__(self, bulk_modulus=500 * units.GPa, phonon_frequency=50 * THz,
apply_positions=True, apply_cell=True):
"""
Default bulk modulus is 500 GPa and default phonon frequency is 50 THz
"""
self.bulk_modulus = bulk_modulus
self.phonon_frequency = phonon_frequency
self.apply_positions = apply_positions
self.apply_cell = apply_cell
self.H0 = None
def make_precon(self, atoms, reinitialize=None):
if self.H0 is not None:
# only build H0 on first call
return
variable_cell = False
if isinstance(atoms, Filter):
variable_cell = True
atoms = atoms.atoms
# position DoF
omega = self.phonon_frequency
mass = atoms.get_masses().mean()
block = np.eye(3) / (mass * omega**2)
blocks = [block] * len(atoms)
# cell DoF
if variable_cell:
coeff = 1.0
if self.apply_cell:
coeff = 1.0 / (3 * self.bulk_modulus)
blocks.append(np.diag([coeff] * 9))
self.H0 = sparse.block_diag(blocks, format='csr')
return
def Pdot(self, x):
return self.H0.solve(x)
def solve(self, x):
y = self.H0.dot(x)
return y
def copy(self):
return Pfrommer(self.bulk_modulus,
self.phonon_frequency,
self.apply_positions,
self.apply_cell)
def asarray(self):
return np.array(self.H0.todense())
class IdentityPrecon(Precon):
"""
Dummy preconditioner which does not modify forces
"""
def make_precon(self, atoms, reinitialize=None):
self.atoms = atoms
def Pdot(self, x):
return x
def solve(self, x):
return x
def copy(self):
return IdentityPrecon()
def asarray(self):
return np.eye(3 * len(self.atoms))
class C1(SparseCoeffPrecon):
"""Creates matrix by inserting a constant whenever r_ij is less than r_cut.
"""
def __init__(self, r_cut=None, mu=None, mu_c=None, dim=3, c_stab=0.1,
force_stab=False,
reinitialize=False, array_convention='C',
solver="auto", solve_tol=1e-9,
apply_positions=True, apply_cell=True, logfile=None):
super().__init__(r_cut=r_cut, mu=mu, mu_c=mu_c,
dim=dim, c_stab=c_stab,
force_stab=force_stab,
reinitialize=reinitialize,
array_convention=array_convention,
solver=solver, solve_tol=solve_tol,
apply_positions=apply_positions,
apply_cell=apply_cell,
logfile=logfile)
def get_coeff(self, r):
return -self.mu * np.ones_like(r)
class Exp(SparseCoeffPrecon):
"""Creates matrix with values decreasing exponentially with distance.
"""
def __init__(self, A=3.0, r_cut=None, r_NN=None, mu=None, mu_c=None,
dim=3, c_stab=0.1,
force_stab=False, reinitialize=False, array_convention='C',
solver="auto", solve_tol=1e-9,
apply_positions=True, apply_cell=True,
estimate_mu_eigmode=False, logfile=None):
"""
Initialise an Exp preconditioner with given parameters.
Args:
r_cut, mu, c_stab, dim, sparse, reinitialize, array_convention: see
precon.__init__()
A: coefficient in exp(-A*r/r_NN). Default is A=3.0.
"""
super().__init__(r_cut=r_cut, r_NN=r_NN,
mu=mu, mu_c=mu_c, dim=dim, c_stab=c_stab,
force_stab=force_stab,
reinitialize=reinitialize,
array_convention=array_convention,
solver=solver,
solve_tol=solve_tol,
apply_positions=apply_positions,
apply_cell=apply_cell,
estimate_mu_eigmode=estimate_mu_eigmode,
logfile=logfile)
self.A = A
def get_coeff(self, r):
return -self.mu * np.exp(-self.A * (r / self.r_NN - 1))
def ij_to_x(i, j):
x = [3 * i, 3 * i + 1, 3 * i + 2,
3 * j, 3 * j + 1, 3 * j + 2]
return x
def ijk_to_x(i, j, k):
x = [3 * i, 3 * i + 1, 3 * i + 2,
3 * j, 3 * j + 1, 3 * j + 2,
3 * k, 3 * k + 1, 3 * k + 2]
return x
def ijkl_to_x(i, j, k, l):
x = [3 * i, 3 * i + 1, 3 * i + 2,
3 * j, 3 * j + 1, 3 * j + 2,
3 * k, 3 * k + 1, 3 * k + 2,
3 * l, 3 * l + 1, 3 * l + 2]
return x
def apply_fixed(atoms, P):
fixed_atoms = []
for constraint in atoms.constraints:
if isinstance(constraint, FixAtoms):
fixed_atoms.extend(list(constraint.index))
else:
raise TypeError(
'only FixAtoms constraints are supported by Precon class')
if len(fixed_atoms) != 0:
P = P.tolil()
for i in fixed_atoms:
P[i, :] = 0.0
P[:, i] = 0.0
P[i, i] = 1.0
return P
class FF(SparsePrecon):
"""Creates matrix using morse/bond/angle/dihedral force field parameters.
"""
def __init__(self, dim=3, c_stab=0.1, force_stab=False,
array_convention='C', solver="auto", solve_tol=1e-9,
apply_positions=True, apply_cell=True,
hessian='spectral', morses=None, bonds=None, angles=None,
dihedrals=None, logfile=None):
"""Initialise an FF preconditioner with given parameters.
Args:
dim, c_stab, force_stab, array_convention, use_pyamg, solve_tol:
see SparsePrecon.__init__()
morses: Morse instance
bonds: Bond instance
angles: Angle instance
dihedrals: Dihedral instance
"""
if (morses is None and bonds is None and angles is None and
dihedrals is None):
raise ImportError(
'At least one of morses, bonds, angles or dihedrals must be '
'defined!')
super().__init__(dim=dim, c_stab=c_stab,
force_stab=force_stab,
array_convention=array_convention,
solver=solver,
solve_tol=solve_tol,
apply_positions=apply_positions,
apply_cell=apply_cell, logfile=logfile)
self.hessian = hessian
self.morses = morses
self.bonds = bonds
self.angles = angles
self.dihedrals = dihedrals
def make_precon(self, atoms, reinitialize=None):
start_time = time.time()
self._make_sparse_precon(atoms, force_stab=self.force_stab)
self.logfile.write(
f'--- Precon created in {(time.time() - start_time)} seconds '
'---\n')
def add_morse(self, morse, atoms, row, col, data, conn=None):
if self.hessian == 'reduced':
i, j, Hx = ff.get_morse_potential_reduced_hessian(
atoms, morse)
elif self.hessian == 'spectral':
i, j, Hx = ff.get_morse_potential_hessian(
atoms, morse, spectral=True)
else:
raise NotImplementedError('Not implemented hessian')
x = ij_to_x(i, j)
row.extend(np.repeat(x, 6))
col.extend(np.tile(x, 6))
data.extend(Hx.flatten())
if conn is not None:
conn[i, j] = True
conn[j, i] = True
def add_bond(self, bond, atoms, row, col, data, conn=None):
if self.hessian == 'reduced':
i, j, Hx = ff.get_bond_potential_reduced_hessian(
atoms, bond, self.morses)
elif self.hessian == 'spectral':
i, j, Hx = ff.get_bond_potential_hessian(
atoms, bond, self.morses, spectral=True)
else:
raise NotImplementedError('Not implemented hessian')
x = ij_to_x(i, j)
row.extend(np.repeat(x, 6))
col.extend(np.tile(x, 6))
data.extend(Hx.flatten())
if conn is not None:
conn[i, j] = True
conn[j, i] = True
def add_angle(self, angle, atoms, row, col, data, conn=None):
if self.hessian == 'reduced':
i, j, k, Hx = ff.get_angle_potential_reduced_hessian(
atoms, angle, self.morses)
elif self.hessian == 'spectral':
i, j, k, Hx = ff.get_angle_potential_hessian(
atoms, angle, self.morses, spectral=True)
else:
raise NotImplementedError('Not implemented hessian')
x = ijk_to_x(i, j, k)
row.extend(np.repeat(x, 9))
col.extend(np.tile(x, 9))
data.extend(Hx.flatten())
if conn is not None:
conn[i, j] = conn[i, k] = conn[j, k] = True
conn[j, i] = conn[k, i] = conn[k, j] = True
def add_dihedral(self, dihedral, atoms, row, col, data, conn=None):
if self.hessian == 'reduced':
i, j, k, l, Hx = \
ff.get_dihedral_potential_reduced_hessian(
atoms, dihedral, self.morses)
elif self.hessian == 'spectral':
i, j, k, l, Hx = ff.get_dihedral_potential_hessian(
atoms, dihedral, self.morses, spectral=True)
else:
raise NotImplementedError('Not implemented hessian')
x = ijkl_to_x(i, j, k, l)
row.extend(np.repeat(x, 12))
col.extend(np.tile(x, 12))
data.extend(Hx.flatten())
if conn is not None:
conn[i, j] = conn[i, k] = conn[i, l] = conn[
j, k] = conn[j, l] = conn[k, l] = True
conn[j, i] = conn[k, i] = conn[l, i] = conn[
k, j] = conn[l, j] = conn[l, k] = True
def _make_sparse_precon(self, atoms, initial_assembly=False,
force_stab=False):
N = len(atoms)
row = []
col = []
data = []
if self.morses is not None:
for morse in self.morses:
self.add_morse(morse, atoms, row, col, data)
if self.bonds is not None:
for bond in self.bonds:
self.add_bond(bond, atoms, row, col, data)
if self.angles is not None:
for angle in self.angles:
self.add_angle(angle, atoms, row, col, data)
if self.dihedrals is not None:
for dihedral in self.dihedrals:
self.add_dihedral(dihedral, atoms, row, col, data)
# add the diagonal
row.extend(range(self.dim * N))
col.extend(range(self.dim * N))
data.extend([self.c_stab] * self.dim * N)
# create the matrix
start_time = time.time()
self.P = sparse.csc_matrix(
(data, (row, col)), shape=(self.dim * N, self.dim * N))
self.logfile.write(
f'--- created CSC matrix in {(time.time() - start_time)} s ---\n')
self.P = apply_fixed(atoms, self.P)
self.P = self.P.tocsr()
self.logfile.write(
f'--- N-dim precon created in {(time.time() - start_time)} s ---\n')
self.create_solver()
class Exp_FF(Exp, FF):
"""Creates matrix with values decreasing exponentially with distance.
"""
def __init__(self, A=3.0, r_cut=None, r_NN=None, mu=None, mu_c=None,
dim=3, c_stab=0.1,
force_stab=False, reinitialize=False, array_convention='C',
solver="auto", solve_tol=1e-9,
apply_positions=True, apply_cell=True,
estimate_mu_eigmode=False,
hessian='spectral', morses=None, bonds=None, angles=None,
dihedrals=None, logfile=None):
"""Initialise an Exp+FF preconditioner with given parameters.
Args:
r_cut, mu, c_stab, dim, reinitialize, array_convention: see
precon.__init__()
A: coefficient in exp(-A*r/r_NN). Default is A=3.0.
"""
if (morses is None and bonds is None and angles is None and
dihedrals is None):
raise ImportError(
'At least one of morses, bonds, angles or dihedrals must '
'be defined!')
SparsePrecon.__init__(self, r_cut=r_cut, r_NN=r_NN,
mu=mu, mu_c=mu_c, dim=dim, c_stab=c_stab,
force_stab=force_stab,
reinitialize=reinitialize,
array_convention=array_convention,
solver=solver,
solve_tol=solve_tol,
apply_positions=apply_positions,
apply_cell=apply_cell,
estimate_mu_eigmode=estimate_mu_eigmode,
logfile=logfile)
self.A = A
self.hessian = hessian
self.morses = morses
self.bonds = bonds
self.angles = angles
self.dihedrals = dihedrals
def make_precon(self, atoms, reinitialize=None):
if self.r_NN is None:
self.r_NN = estimate_nearest_neighbour_distance(atoms,
self.neighbor_list)
if self.r_cut is None:
# This is the first time this function has been called, and no
# cutoff radius has been specified, so calculate it automatically.
self.r_cut = 2.0 * self.r_NN
elif self.r_cut < self.r_NN:
warning = ('WARNING: r_cut (%.2f) < r_NN (%.2f), '
'increasing to 1.1*r_NN = %.2f' % (self.r_cut,
self.r_NN,
1.1 * self.r_NN))
warnings.warn(warning)
self.r_cut = 1.1 * self.r_NN
if reinitialize is None:
# The caller has not specified whether or not to recalculate mu,
# so the Precon's setting is used.
reinitialize = self.reinitialize
if self.mu is None:
# Regardless of what the caller has specified, if we don't
# currently have a value of mu, then we need one.
reinitialize = True
if reinitialize:
self.estimate_mu(atoms)
if self.P is not None:
real_atoms = atoms
if isinstance(atoms, Filter):
real_atoms = atoms.atoms
if self.old_positions is None:
self.old_positions = real_atoms.positions
displacement, _ = find_mic(real_atoms.positions -
self.old_positions,
real_atoms.cell, real_atoms.pbc)
self.old_positions = real_atoms.get_positions()
max_abs_displacement = abs(displacement).max()
self.logfile.write('max(abs(displacements)) = %.2f A (%.2f r_NN)' %
(max_abs_displacement,
max_abs_displacement / self.r_NN))
if max_abs_displacement < 0.5 * self.r_NN:
return
# Create the preconditioner:
start_time = time.time()
self._make_sparse_precon(atoms, force_stab=self.force_stab)
self.logfile.write(
f'--- Precon created in {(time.time() - start_time)} seconds ---\n')
def _make_sparse_precon(self, atoms, initial_assembly=False,
force_stab=False):
"""Create a sparse preconditioner matrix based on the passed atoms.
Args:
atoms: the Atoms object used to create the preconditioner.
Returns:
A scipy.sparse.csr_matrix object, representing a d*N by d*N matrix
(where N is the number of atoms, and d is the value of self.dim).
BE AWARE that using numpy.dot() with this object will result in
errors/incorrect results - use the .dot method directly on the
sparse matrix instead.
"""
self.logfile.write('creating sparse precon: initial_assembly=%r, '
'force_stab=%r, apply_positions=%r, '
'apply_cell=%r\n' %
(initial_assembly, force_stab,
self.apply_positions, self.apply_cell))
N = len(atoms)
start_time = time.time()
if self.apply_positions:
# compute neighbour list
i_list, j_list, rij_list, _fixed_atoms = get_neighbours(
atoms, self.r_cut, self.neighbor_list)
self.logfile.write(
f'--- neighbour list created in {(time.time() - start_time)} s '
'---\n')
row = []
col = []
data = []
# precon is mu_c*identity for cell DoF
start_time = time.time()
if isinstance(atoms, Filter):
i = N - 3
j = N - 2
k = N - 1
x = ijk_to_x(i, j, k)
row.extend(x)
col.extend(x)
if self.apply_cell:
data.extend(np.repeat(self.mu_c, 9))
else:
data.extend(np.repeat(self.mu_c, 9))
self.logfile.write(
f'--- computed triplet format in {(time.time() - start_time)} s '
'---\n')
conn = sparse.lil_matrix((N, N), dtype=bool)
if self.apply_positions and not initial_assembly:
if self.morses is not None:
for morse in self.morses:
self.add_morse(morse, atoms, row, col, data, conn)
if self.bonds is not None:
for bond in self.bonds:
self.add_bond(bond, atoms, row, col, data, conn)
if self.angles is not None:
for angle in self.angles:
self.add_angle(angle, atoms, row, col, data, conn)
if self.dihedrals is not None:
for dihedral in self.dihedrals:
self.add_dihedral(dihedral, atoms, row, col, data, conn)
if self.apply_positions:
for i, j, rij in zip(i_list, j_list, rij_list):
if not conn[i, j]:
coeff = self.get_coeff(rij)
x = ij_to_x(i, j)
row.extend(x)
col.extend(x)
data.extend(3 * [-coeff] + 3 * [coeff])
row.extend(range(self.dim * N))
col.extend(range(self.dim * N))
if initial_assembly:
data.extend([self.mu * self.c_stab] * self.dim * N)
else:
data.extend([self.c_stab] * self.dim * N)
# create the matrix
start_time = time.time()
self.P = sparse.csc_matrix(
(data, (row, col)), shape=(self.dim * N, self.dim * N))
self.logfile.write(
f'--- created CSC matrix in {(time.time() - start_time)} s ---\n')
if not initial_assembly:
self.P = apply_fixed(atoms, self.P)
self.P = self.P.tocsr()
self.create_solver()
def make_precon(precon, atoms=None, **kwargs):
"""
Construct preconditioner from a string and optionally build for Atoms
Parameters
----------
precon - one of 'C1', 'Exp', 'Pfrommer', 'FF', 'Exp_FF', 'ID', None
or an instance of a subclass of `ase.optimize.precon.Precon`
atoms - ase.atoms.Atoms instance, optional
If present, build apreconditioner for this Atoms object
**kwargs - additional keyword arguments to pass to Precon constructor
Returns
-------
precon - instance of relevant subclass of `ase.optimize.precon.Precon`
"""
lookup = {
'C1': C1,
'Exp': Exp,
'Pfrommer': Pfrommer,
'FF': FF,
'Exp_FF': Exp_FF,
'ID': IdentityPrecon,
'IdentityPrecon': IdentityPrecon,
None: IdentityPrecon
}
if isinstance(precon, str) or precon is None:
cls = lookup[precon]
precon = cls(**kwargs)
if atoms is not None:
precon.make_precon(atoms)
return precon
class SplineFit:
"""
Fit a cubic spline fit to images
"""
def __init__(self, s, x):
self._s = s
self._x_data = x
self._x = CubicSpline(self._s, x, bc_type='not-a-knot')
self._dx_ds = self._x.derivative()
self._d2x_ds2 = self._x.derivative(2)
@property
def s(self):
return self._s
@property
def x_data(self):
return self._x_data
@property
def x(self):
return self._x
@property
def dx_ds(self):
return self._dx_ds
@property
def d2x_ds2(self):
return self._d2x_ds2
class PreconImages:
def __init__(self, precon, images, **kwargs):
"""
Wrapper for a list of Precon objects and associated images
This is used when preconditioning a NEB object. Equation references
refer to Paper IV in the :class:`ase.mep.NEB` documentation, i.e.
S. Makri, C. Ortner and J. R. Kermode, J. Chem. Phys.
150, 094109 (2019)
https://dx.doi.org/10.1063/1.5064465
Args:
precon (str or list): preconditioner(s) to use
images (list of Atoms): Atoms objects that define the state
"""
self.images = images
self._spline = None
if isinstance(precon, list):
if len(precon) != len(images):
raise ValueError(f'length mismatch: len(precon)={len(precon)} '
f'!= len(images)={len(images)}')
self.precon = precon
return
P0 = make_precon(precon, images[0], **kwargs)
self.precon = [P0]
for image in images[1:]:
P = P0.copy()
P.make_precon(image)
self.precon.append(P)
def __len__(self):
return len(self.precon)
def __iter__(self):
return iter(self.precon)
def __getitem__(self, index):
return self.precon[index]
def apply(self, all_forces, index=None):
"""Apply preconditioners to stored images
Args:
all_forces (array): forces on images, shape (nimages, natoms, 3)
index (slice, optional): Which images to include. Defaults to all.
Returns:
precon_forces: array of preconditioned forces
"""
if index is None:
index = slice(None)
precon_forces = []
for precon, image, forces in zip(self.precon[index],
self.images[index],
all_forces):
f_vec = forces.reshape(-1)
pf_vec, _ = precon.apply(f_vec, image)
precon_forces.append(pf_vec.reshape(-1, 3))
return np.array(precon_forces)
def average_norm(self, i, j, dx):
"""Average norm between images i and j
Args:
i (int): left image
j (int): right image
dx (array): vector
Returns:
norm: norm of vector wrt average of precons at i and j
"""
return np.sqrt(0.5 * (self.precon[i].dot(dx, dx) +
self.precon[j].dot(dx, dx)))
def get_tangent(self, i):
"""Normalised tangent vector at image i
Args:
i (int): image of interest
Returns:
tangent: tangent vector, normalised with appropriate precon norm
"""
tangent = self.spline.dx_ds(self.spline.s[i])
tangent /= self.precon[i].norm(tangent)
return tangent.reshape(-1, 3)
def get_residual(self, i, imgforce):
# residuals computed according to eq. 11 in the paper
P_dot_imgforce = self.precon[i].Pdot(imgforce.reshape(-1))
return np.linalg.norm(P_dot_imgforce, np.inf)
def get_spring_force(self, i, k1, k2, tangent):
"""Spring force on image
Args:
i (int): image of interest
k1 (float): spring constant for left spring
k2 (float): spring constant for right spring
tangent (array): tangent vector, shape (natoms, 3)
Returns:
eta: NEB spring forces, shape (natoms, 3)
"""
# Definition following Eq. 9 in Paper IV
nimages = len(self.images)
k = 0.5 * (k1 + k2) / (nimages ** 2)
curvature = self.spline.d2x_ds2(self.spline.s[i]).reshape(-1, 3)
# complete Eq. 9 by including the spring force
eta = k * self.precon[i].vdot(curvature, tangent) * tangent
return eta
def get_coordinates(self, positions=None):
"""Compute displacements wrt appropriate precon metric for each image
Args:
positions (list or array, optional) - images positions.
Shape either (nimages * natoms, 3) or ((nimages-2)*natoms, 3)
Returns:
s : array shape (nimages,), reaction coordinates, in range [0, 1]
x : array shape (nimages, 3 * natoms), flat displacement vectors
"""
nimages = len(self.precon)
natoms = len(self.images[0])
d_P = np.zeros(nimages)
x = np.zeros((nimages, 3 * natoms)) # flattened positions
if positions is None:
positions = [image.positions for image in self.images]
elif isinstance(positions, np.ndarray) and len(positions.shape) == 2:
positions = positions.reshape(-1, natoms, 3)
positions = [positions[i, :, :] for i in range(len(positions))]
if len(positions) == len(self.images) - 2:
# prepend and append the non-moving images
positions = ([self.images[0].positions] + positions +
[self.images[-1].positions])
assert len(positions) == len(self.images)
x[0, :] = positions[0].reshape(-1)
for i in range(1, nimages):
x[i, :] = positions[i].reshape(-1)
dx, _ = find_mic(positions[i] - positions[i - 1],
self.images[i - 1].cell,
self.images[i - 1].pbc)
dx = dx.reshape(-1)
d_P[i] = self.average_norm(i, i - 1, dx)
s = d_P.cumsum() / d_P.sum() # Eq. A1 in paper IV
return s, x
def spline_fit(self, positions=None):
"""Fit 3 * natoms cubic splines as a function of reaction coordinate
Returns:
fit : :class:`ase.optimize.precon.SplineFit` object
"""
s, x = self.get_coordinates(positions)
return SplineFit(s, x)
@property
def spline(self):
s, x = self.get_coordinates()
if self._spline and (np.abs(s - self._old_s).max() < 1e-6 and
np.abs(x - self._old_x).max() < 1e-6):
return self._spline
self._spline = self.spline_fit()
self._old_s = s
self._old_x = x
return self._spline
|