1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
from abc import ABC, abstractmethod
from collections.abc import Mapping
from typing import Sequence, Union
import numpy as np
class Properties(Mapping):
def __init__(self, dct):
self._dct = {}
for name, value in dct.items():
self._setvalue(name, value)
def __len__(self):
return len(self._dct)
def __iter__(self):
return iter(self._dct)
def __getitem__(self, name):
return self._dct[name]
def _setvalue(self, name, value):
if name in self._dct:
# Which error should we raise for already existing property?
raise ValueError(f'{name} already set')
prop = all_outputs[name]
value = prop.normalize_type(value)
shape = np.shape(value)
if not self.shape_is_consistent(prop, value):
raise ValueError(f'{name} has bad shape: {shape}')
for i, spec in enumerate(prop.shapespec):
if not isinstance(spec, str) or spec in self._dct:
continue
self._setvalue(spec, shape[i])
self._dct[name] = value
def shape_is_consistent(self, prop, value) -> bool:
"""Return whether shape of values is consistent with properties.
For example, forces of shape (7, 3) are consistent
unless properties already have "natoms" with non-7 value.
"""
shapespec = prop.shapespec
shape = np.shape(value)
if len(shapespec) != len(shape):
return False
for dimspec, dim in zip(shapespec, shape):
if isinstance(dimspec, str):
dimspec = self._dct.get(dimspec, dim)
if dimspec != dim:
return False
return True
def __repr__(self):
clsname = type(self).__name__
return f'({clsname}({self._dct})'
all_outputs = {}
class Property(ABC):
def __init__(self, name, dtype, shapespec):
self.name = name
assert dtype in [float, int] # Others?
self.dtype = dtype
self.shapespec = shapespec
@abstractmethod
def normalize_type(self, value):
...
def __repr__(self) -> str:
typename = self.dtype.__name__ # Extend to other than float/int?
shape = ', '.join(str(dim) for dim in self.shapespec)
return f'Property({self.name!r}, dtype={typename}, shape=[{shape}])'
class ScalarProperty(Property):
def __init__(self, name, dtype):
super().__init__(name, dtype, ())
def normalize_type(self, value):
if not np.isscalar(value):
raise TypeError('Expected scalar')
return self.dtype(value)
class ArrayProperty(Property):
def normalize_type(self, value):
if np.isscalar(value):
raise TypeError('Expected array, got scalar')
return np.asarray(value, dtype=self.dtype)
ShapeSpec = Union[str, int]
def _defineprop(
name: str,
dtype: type = float,
shape: Union[ShapeSpec, Sequence[ShapeSpec]] = ()
) -> Property:
"""Create, register, and return a property."""
if isinstance(shape, (int, str)):
shape = (shape,)
shape = tuple(shape)
prop: Property
if len(shape) == 0:
prop = ScalarProperty(name, dtype)
else:
prop = ArrayProperty(name, dtype, shape)
assert name not in all_outputs, name
all_outputs[name] = prop
return prop
# Atoms, energy, forces, stress:
_defineprop('natoms', int)
_defineprop('energy', float)
_defineprop('energies', float, shape='natoms')
_defineprop('free_energy', float)
_defineprop('forces', float, shape=('natoms', 3))
_defineprop('stress', float, shape=6)
_defineprop('stresses', float, shape=('natoms', 6))
# Electronic structure:
_defineprop('nbands', int)
_defineprop('nkpts', int)
_defineprop('nspins', int)
_defineprop('fermi_level', float)
_defineprop('kpoint_weights', float, shape='nkpts')
_defineprop('ibz_kpoints', float, shape=('nkpts', 3))
_defineprop('eigenvalues', float, shape=('nspins', 'nkpts', 'nbands'))
_defineprop('occupations', float, shape=('nspins', 'nkpts', 'nbands'))
# Miscellaneous:
_defineprop('dipole', float, shape=3)
_defineprop('charges', float, shape='natoms')
_defineprop('magmom', float)
_defineprop('magmoms', float, shape='natoms') # XXX spinors?
_defineprop('polarization', float, shape=3)
_defineprop('dielectric_tensor', float, shape=(3, 3))
_defineprop('born_effective_charges', float, shape=('natoms', 3, 3))
# We might want to allow properties that are part of Atoms, such as
# positions, numbers, pbc, cell. It would be reasonable for those
# concepts to have a formalization outside the Atoms class.
# def to_singlepoint(self, atoms):
# from ase.calculators.singlepoint import SinglePointDFTCalculator
# return SinglePointDFTCalculator(atoms,
# efermi=self.fermi_level,
# We can also retrieve (P)DOS and band structure. However:
#
# * Band structure may require bandpath, which is an input, and
# may not necessarily be easy or possible to reconstruct from
# the outputs.
#
# * Some calculators may produce the whole BandStructure object in
# one go (e.g. while parsing)
#
# * What about HOMO/LUMO? Can be obtained from
# eigenvalues/occupations, but some codes provide real data. We
# probably need to distinguish between HOMO/LUMO inferred by us
# versus values provided within the output.
#
# * HOMO is sometimes used as alternative reference energy for
# band structure.
#
# * What about spin-dependent (double) Fermi level?
#
# * What about 3D arrays? We will almost certainly want to be
# connected to an object that can load dynamically from a file.
|