1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
|
# Copyright (C) 2010, Jesper Friis
# (see accompanying license files for details).
"""Definition of the Spacegroup class.
This module only depends on NumPy and the space group database.
"""
import os
import warnings
from functools import lru_cache, total_ordering
from types import SimpleNamespace
from typing import Union
import numpy as np
from ase.utils import deprecated
__all__ = ['Spacegroup']
class SpacegroupError(Exception):
"""Base exception for the spacegroup module."""
class SpacegroupNotFoundError(SpacegroupError):
"""Raised when given space group cannot be found in data base."""
class SpacegroupValueError(SpacegroupError):
"""Raised when arguments have invalid value."""
# Type alias
_SPACEGROUP = Union[int, str, 'Spacegroup']
@total_ordering
class Spacegroup:
"""A space group class.
The instances of Spacegroup describes the symmetry operations for
the given space group.
Example:
>>> from ase.spacegroup import Spacegroup
>>>
>>> sg = Spacegroup(225)
>>> print('Space group', sg.no, sg.symbol)
Space group 225 F m -3 m
>>> sg.scaled_primitive_cell
array([[ 0. , 0.5, 0.5],
[ 0.5, 0. , 0.5],
[ 0.5, 0.5, 0. ]])
>>> sites, kinds = sg.equivalent_sites([[0,0,0]])
>>> sites
array([[ 0. , 0. , 0. ],
[ 0. , 0.5, 0.5],
[ 0.5, 0. , 0.5],
[ 0.5, 0.5, 0. ]])
"""
@property
def no(self):
"""Space group number in International Tables of Crystallography."""
return self._no
@property
def symbol(self):
"""Hermann-Mauguin (or international) symbol for the space group."""
return self._symbol
@property
def setting(self):
"""Space group setting. Either one or two."""
return self._setting
@property
def lattice(self):
"""Lattice type.
P primitive
I body centering, h+k+l=2n
F face centering, h,k,l all odd or even
A,B,C single face centering, k+l=2n, h+l=2n, h+k=2n
R rhombohedral centering, -h+k+l=3n (obverse); h-k+l=3n (reverse)
"""
return self._symbol[0]
@property
def centrosymmetric(self):
"""Whether a center of symmetry exists."""
return self._centrosymmetric
@property
def scaled_primitive_cell(self):
"""Primitive cell in scaled coordinates.
Matrix with the primitive vectors along the rows.
"""
return self._scaled_primitive_cell
@property
def reciprocal_cell(self):
"""
Tree Miller indices that span all kinematically non-forbidden
reflections as a matrix with the Miller indices along the rows.
"""
return self._reciprocal_cell
@property
def nsubtrans(self):
"""Number of cell-subtranslation vectors."""
return len(self._subtrans)
@property
def nsymop(self):
"""Total number of symmetry operations."""
scale = 2 if self.centrosymmetric else 1
return scale * len(self._rotations) * len(self._subtrans)
@property
def subtrans(self):
"""Translations vectors belonging to cell-sub-translations."""
return self._subtrans
@property
def rotations(self):
"""Symmetry rotation matrices.
The invertions are not included for centrosymmetrical crystals.
"""
return self._rotations
@property
def translations(self):
"""Symmetry translations.
The invertions are not included for centrosymmetrical crystals.
"""
return self._translations
def __init__(self, spacegroup: _SPACEGROUP, setting=1, datafile=None):
"""Returns a new Spacegroup instance.
Parameters:
spacegroup : int | string | Spacegroup instance
The space group number in International Tables of
Crystallography or its Hermann-Mauguin symbol. E.g.
spacegroup=225 and spacegroup='F m -3 m' are equivalent.
setting : 1 | 2
Some space groups have more than one setting. `setting`
determines Which of these should be used.
datafile : None | string
Path to database file. If `None`, the the default database
will be used.
"""
if isinstance(spacegroup, Spacegroup):
for k, v in spacegroup.__dict__.items():
setattr(self, k, v)
return
if not datafile:
datafile = get_datafile()
namespace = _read_datafile(spacegroup, setting, datafile)
self._no = namespace._no
self._symbol = namespace._symbol
self._setting = namespace._setting
self._centrosymmetric = namespace._centrosymmetric
self._scaled_primitive_cell = namespace._scaled_primitive_cell
self._reciprocal_cell = namespace._reciprocal_cell
self._subtrans = namespace._subtrans
self._rotations = namespace._rotations
self._translations = namespace._translations
def __repr__(self):
return 'Spacegroup(%d, setting=%d)' % (self.no, self.setting)
def todict(self):
return {'number': self.no, 'setting': self.setting}
def __str__(self):
"""Return a string representation of the space group data in
the same format as found the database."""
retval = []
# no, symbol
retval.append('%-3d %s\n' % (self.no, self.symbol))
# setting
retval.append(' setting %d\n' % (self.setting))
# centrosymmetric
retval.append(' centrosymmetric %d\n' % (self.centrosymmetric))
# primitive vectors
retval.append(' primitive vectors\n')
for i in range(3):
retval.append(' ')
for j in range(3):
retval.append(' %13.10f' % (self.scaled_primitive_cell[i, j]))
retval.append('\n')
# primitive reciprocal vectors
retval.append(' reciprocal vectors\n')
for i in range(3):
retval.append(' ')
for j in range(3):
retval.append(' %3d' % (self.reciprocal_cell[i, j]))
retval.append('\n')
# sublattice
retval.append(' %d subtranslations\n' % self.nsubtrans)
for i in range(self.nsubtrans):
retval.append(' ')
for j in range(3):
retval.append(' %13.10f' % (self.subtrans[i, j]))
retval.append('\n')
# symmetry operations
nrot = len(self.rotations)
retval.append(' %d symmetry operations (rot+trans)\n' % nrot)
for i in range(nrot):
retval.append(' ')
for j in range(3):
retval.append(' ')
for k in range(3):
retval.append(' %2d' % (self.rotations[i, j, k]))
retval.append(' ')
for j in range(3):
retval.append(' %13.10f' % self.translations[i, j])
retval.append('\n')
retval.append('\n')
return ''.join(retval)
def __eq__(self, other):
return self.no == other.no and self.setting == other.setting
def __ne__(self, other):
return not self.__eq__(other)
def __lt__(self, other):
return self.no < other.no or (self.no == other.no
and self.setting < other.setting)
def __index__(self):
return self.no
__int__ = __index__
def get_symop(self):
"""Returns all symmetry operations (including inversions and
subtranslations) as a sequence of (rotation, translation)
tuples."""
symop = []
parities = [1]
if self.centrosymmetric:
parities.append(-1)
for parity in parities:
for subtrans in self.subtrans:
for rot, trans in zip(self.rotations, self.translations):
newtrans = np.mod(trans + subtrans, 1)
symop.append((parity * rot, newtrans))
return symop
def get_op(self):
"""Returns all symmetry operations (including inversions and
subtranslations), but unlike get_symop(), they are returned as
two ndarrays."""
if self.centrosymmetric:
rot = np.tile(np.vstack((self.rotations, -self.rotations)),
(self.nsubtrans, 1, 1))
trans = np.tile(np.vstack((self.translations, -self.translations)),
(self.nsubtrans, 1))
trans += np.repeat(self.subtrans, 2 * len(self.rotations), axis=0)
trans = np.mod(trans, 1)
else:
rot = np.tile(self.rotations, (self.nsubtrans, 1, 1))
trans = np.tile(self.translations, (self.nsubtrans, 1))
trans += np.repeat(self.subtrans, len(self.rotations), axis=0)
trans = np.mod(trans, 1)
return rot, trans
def get_rotations(self):
"""Return all rotations, including inversions for
centrosymmetric crystals."""
if self.centrosymmetric:
return np.vstack((self.rotations, -self.rotations))
else:
return self.rotations
def equivalent_reflections(self, hkl):
"""Return all equivalent reflections to the list of Miller indices
in hkl.
Example:
>>> from ase.spacegroup import Spacegroup
>>> sg = Spacegroup(225) # fcc
>>> sg.equivalent_reflections([[0, 0, 2]])
array([[ 0, 0, -2],
[ 0, -2, 0],
[-2, 0, 0],
[ 2, 0, 0],
[ 0, 2, 0],
[ 0, 0, 2]])
"""
hkl = np.array(hkl, dtype='int', ndmin=2)
rot = self.get_rotations()
n, nrot = len(hkl), len(rot)
R = rot.transpose(0, 2, 1).reshape((3 * nrot, 3)).T
refl = np.dot(hkl, R).reshape((n * nrot, 3))
ind = np.lexsort(refl.T)
refl = refl[ind]
diff = np.diff(refl, axis=0)
mask = np.any(diff, axis=1)
return np.vstack((refl[:-1][mask], refl[-1, :]))
def equivalent_lattice_points(self, uvw):
"""Return all lattice points equivalent to any of the lattice points
in `uvw` with respect to rotations only.
Only equivalent lattice points that conserves the distance to
origo are included in the output (making this a kind of real
space version of the equivalent_reflections() method).
Example:
>>> from ase.spacegroup import Spacegroup
>>> sg = Spacegroup(225) # fcc
>>> sg.equivalent_lattice_points([[0, 0, 2]])
array([[ 0, 0, -2],
[ 0, -2, 0],
[-2, 0, 0],
[ 2, 0, 0],
[ 0, 2, 0],
[ 0, 0, 2]])
"""
uvw = np.array(uvw, ndmin=2)
rot = self.get_rotations()
n, nrot = len(uvw), len(rot)
directions = np.dot(uvw, rot).reshape((n * nrot, 3))
ind = np.lexsort(directions.T)
directions = directions[ind]
diff = np.diff(directions, axis=0)
mask = np.any(diff, axis=1)
return np.vstack((directions[:-1][mask], directions[-1:]))
def symmetry_normalised_reflections(self, hkl):
"""Returns an array of same size as *hkl*, containing the
corresponding symmetry-equivalent reflections of lowest
indices.
Example:
>>> from ase.spacegroup import Spacegroup
>>> sg = Spacegroup(225) # fcc
>>> sg.symmetry_normalised_reflections([[2, 0, 0], [0, 2, 0]])
array([[ 0, 0, -2],
[ 0, 0, -2]])
"""
hkl = np.array(hkl, dtype=int, ndmin=2)
normalised = np.empty(hkl.shape, int)
R = self.get_rotations().transpose(0, 2, 1)
for i, g in enumerate(hkl):
gsym = np.dot(R, g)
j = np.lexsort(gsym.T)[0]
normalised[i, :] = gsym[j]
return normalised
def unique_reflections(self, hkl):
"""Returns a subset *hkl* containing only the symmetry-unique
reflections.
Example:
>>> from ase.spacegroup import Spacegroup
>>> sg = Spacegroup(225) # fcc
>>> sg.unique_reflections([[ 2, 0, 0],
... [ 0, -2, 0],
... [ 2, 2, 0],
... [ 0, -2, -2]])
array([[2, 0, 0],
[2, 2, 0]])
"""
hkl = np.array(hkl, dtype=int, ndmin=2)
hklnorm = self.symmetry_normalised_reflections(hkl)
perm = np.lexsort(hklnorm.T)
iperm = perm.argsort()
xmask = np.abs(np.diff(hklnorm[perm], axis=0)).any(axis=1)
mask = np.concatenate(([True], xmask))
imask = mask[iperm]
return hkl[imask]
def equivalent_sites(self,
scaled_positions,
onduplicates='error',
symprec=1e-3,
occupancies=None):
"""Returns the scaled positions and all their equivalent sites.
Parameters:
scaled_positions: list | array
List of non-equivalent sites given in unit cell coordinates.
occupancies: list | array, optional (default=None)
List of occupancies corresponding to the respective sites.
onduplicates : 'keep' | 'replace' | 'warn' | 'error'
Action if `scaled_positions` contain symmetry-equivalent
positions of full occupancy:
'keep'
ignore additional symmetry-equivalent positions
'replace'
replace
'warn'
like 'keep', but issue an UserWarning
'error'
raises a SpacegroupValueError
symprec: float
Minimum "distance" betweed two sites in scaled coordinates
before they are counted as the same site.
Returns:
sites: array
A NumPy array of equivalent sites.
kinds: list
A list of integer indices specifying which input site is
equivalent to the corresponding returned site.
Example:
>>> from ase.spacegroup import Spacegroup
>>> sg = Spacegroup(225) # fcc
>>> sites, kinds = sg.equivalent_sites([[0, 0, 0], [0.5, 0.0, 0.0]])
>>> sites
array([[ 0. , 0. , 0. ],
[ 0. , 0.5, 0.5],
[ 0.5, 0. , 0.5],
[ 0.5, 0.5, 0. ],
[ 0.5, 0. , 0. ],
[ 0. , 0.5, 0. ],
[ 0. , 0. , 0.5],
[ 0.5, 0.5, 0.5]])
>>> kinds
[0, 0, 0, 0, 1, 1, 1, 1]
"""
if onduplicates not in ('keep', 'replace', 'warn', 'error'):
raise SpacegroupValueError(
'Argument "onduplicates" must be one of: '
'"keep", "replace", "warn" or "error".'
)
scaled = np.array(scaled_positions, ndmin=2)
rotations, translations = zip(*self.get_symop())
rotations = np.array(rotations)
translations = np.array(translations)
def find_orbit(point: np.ndarray) -> np.ndarray:
"""Find crystallographic orbit of the given point."""
candidates = ((rotations @ point) + translations % 1.0) % 1.0
orbit = [candidates[0]]
for member in candidates[1:]:
diff = member - orbit
diff -= np.rint(diff)
if not np.any(np.all(np.abs(diff) < symprec, axis=1)):
orbit.append(member)
return np.array(orbit)
orbits = []
for kind, pos in enumerate(scaled):
for i, (kind0, positions0) in enumerate(orbits):
diff = pos - positions0
diff -= np.rint(diff)
if np.any(np.all(np.abs(diff) < symprec, axis=1)):
if onduplicates == 'keep':
pass
elif onduplicates == 'replace':
orbits[i] = (kind, positions0)
elif onduplicates == 'warn':
warnings.warn(
'scaled_positions %d and %d are equivalent' %
(kind0, kind))
elif onduplicates == 'error':
raise SpacegroupValueError(
'scaled_positions %d and %d are equivalent' %
(kind0, kind))
break
else:
orbits.append((kind, find_orbit(pos)))
kinds = []
sites = []
for kind, orbit in orbits:
kinds.extend(len(orbit) * [kind])
sites.append(orbit)
return np.concatenate(sites, axis=0), kinds
def symmetry_normalised_sites(self,
scaled_positions,
map_to_unitcell=True):
"""Returns an array of same size as *scaled_positions*,
containing the corresponding symmetry-equivalent sites of
lowest indices.
If *map_to_unitcell* is true, the returned positions are all
mapped into the unit cell, i.e. lattice translations are
included as symmetry operator.
Example:
>>> from ase.spacegroup import Spacegroup
>>> sg = Spacegroup(225) # fcc
>>> sg.symmetry_normalised_sites([[0.0, 0.5, 0.5], [1.0, 1.0, 0.0]])
array([[ 0., 0., 0.],
[ 0., 0., 0.]])
"""
scaled = np.array(scaled_positions, ndmin=2)
normalised = np.empty(scaled.shape, float)
rot, trans = self.get_op()
for i, pos in enumerate(scaled):
sympos = np.dot(rot, pos) + trans
if map_to_unitcell:
# Must be done twice, see the scaled_positions.py test
sympos %= 1.0
sympos %= 1.0
j = np.lexsort(sympos.T)[0]
normalised[i, :] = sympos[j]
return normalised
def unique_sites(self,
scaled_positions,
symprec=1e-3,
output_mask=False,
map_to_unitcell=True):
"""Returns a subset of *scaled_positions* containing only the
symmetry-unique positions. If *output_mask* is True, a boolean
array masking the subset is also returned.
If *map_to_unitcell* is true, all sites are first mapped into
the unit cell making e.g. [0, 0, 0] and [1, 0, 0] equivalent.
Example:
>>> from ase.spacegroup import Spacegroup
>>> sg = Spacegroup(225) # fcc
>>> sg.unique_sites([[0.0, 0.0, 0.0],
... [0.5, 0.5, 0.0],
... [1.0, 0.0, 0.0],
... [0.5, 0.0, 0.0]])
array([[ 0. , 0. , 0. ],
[ 0.5, 0. , 0. ]])
"""
scaled = np.array(scaled_positions, ndmin=2)
symnorm = self.symmetry_normalised_sites(scaled, map_to_unitcell)
perm = np.lexsort(symnorm.T)
iperm = perm.argsort()
xmask = np.abs(np.diff(symnorm[perm], axis=0)).max(axis=1) > symprec
mask = np.concatenate(([True], xmask))
imask = mask[iperm]
if output_mask:
return scaled[imask], imask
else:
return scaled[imask]
def tag_sites(self, scaled_positions, symprec=1e-3):
"""Returns an integer array of the same length as *scaled_positions*,
tagging all equivalent atoms with the same index.
Example:
>>> from ase.spacegroup import Spacegroup
>>> sg = Spacegroup(225) # fcc
>>> sg.tag_sites([[0.0, 0.0, 0.0],
... [0.5, 0.5, 0.0],
... [1.0, 0.0, 0.0],
... [0.5, 0.0, 0.0]])
array([0, 0, 0, 1])
"""
scaled = np.array(scaled_positions, ndmin=2)
scaled %= 1.0
scaled %= 1.0
tags = -np.ones((len(scaled), ), dtype=int)
mask = np.ones((len(scaled), ), dtype=bool)
rot, trans = self.get_op()
i = 0
while mask.any():
pos = scaled[mask][0]
sympos = np.dot(rot, pos) + trans
# Must be done twice, see the scaled_positions.py test
sympos %= 1.0
sympos %= 1.0
m = ~np.all(np.any(np.abs(scaled[np.newaxis, :, :] -
sympos[:, np.newaxis, :]) > symprec,
axis=2),
axis=0)
assert not np.any((~mask) & m)
tags[m] = i
mask &= ~m
i += 1
return tags
def get_datafile():
"""Return default path to datafile."""
return os.path.join(os.path.dirname(__file__), 'spacegroup.dat')
def format_symbol(symbol):
"""Returns well formatted Hermann-Mauguin symbol as extected by
the database, by correcting the case and adding missing or
removing dublicated spaces."""
fixed = []
s = symbol.strip()
s = s[0].upper() + s[1:].lower()
for c in s:
if c.isalpha():
if len(fixed) and fixed[-1] == '/':
fixed.append(c)
else:
fixed.append(' ' + c + ' ')
elif c.isspace():
fixed.append(' ')
elif c.isdigit():
fixed.append(c)
elif c == '-':
fixed.append(' ' + c)
elif c == '/':
fixed.append(c)
s = ''.join(fixed).strip()
return ' '.join(s.split())
# Functions for parsing the database. They are moved outside the
# Spacegroup class in order to make it easier to later implement
# caching to avoid reading the database each time a new Spacegroup
# instance is created.
def _skip_to_blank(f, spacegroup, setting):
"""Read lines from f until a blank line is encountered."""
while True:
line = f.readline()
if not line:
raise SpacegroupNotFoundError(
f'invalid spacegroup `{spacegroup}`, setting `{setting}` not '
'found in data base')
if not line.strip():
break
def _skip_to_nonblank(f, spacegroup, setting):
"""Read lines from f until a nonblank line not starting with a
hash (#) is encountered and returns this and the next line."""
while True:
line1 = f.readline()
if not line1:
raise SpacegroupNotFoundError(
'invalid spacegroup %s, setting %i not found in data base' %
(spacegroup, setting))
line1.strip()
if line1 and not line1.startswith('#'):
line2 = f.readline()
break
return line1, line2
def _read_datafile_entry(spg, no, symbol, setting, f):
"""Read space group data from f to spg."""
floats = {'0.0': 0.0, '1.0': 1.0, '0': 0.0, '1': 1.0, '-1': -1.0}
for n, d in [(1, 2), (1, 3), (2, 3), (1, 4), (3, 4), (1, 6), (5, 6)]:
floats[f'{n}/{d}'] = n / d
floats[f'-{n}/{d}'] = -n / d
spg._no = no
spg._symbol = symbol.strip()
spg._setting = setting
spg._centrosymmetric = bool(int(f.readline().split()[1]))
# primitive vectors
f.readline()
spg._scaled_primitive_cell = np.array(
[
[float(floats.get(s, s)) for s in f.readline().split()]
for _ in range(3)
],
dtype=float,
)
# primitive reciprocal vectors
f.readline()
spg._reciprocal_cell = np.array([[int(i) for i in f.readline().split()]
for i in range(3)],
dtype=int)
# subtranslations
nsubtrans = int(f.readline().split()[0])
spg._subtrans = np.array(
[
[float(floats.get(t, t)) for t in f.readline().split()]
for _ in range(nsubtrans)
],
dtype=float,
)
# symmetry operations
nsym = int(f.readline().split()[0])
symop = np.array(
[
[float(floats.get(s, s)) for s in f.readline().split()]
for _ in range(nsym)
],
dtype=float,
)
spg._rotations = np.array(symop[:, :9].reshape((nsym, 3, 3)), dtype=int)
spg._translations = symop[:, 9:]
@lru_cache
def _read_datafile(spacegroup, setting, datafile):
with open(datafile, encoding='utf-8') as fd:
return _read_f(spacegroup, setting, fd)
def _read_f(spacegroup, setting, f):
if isinstance(spacegroup, int):
pass
elif isinstance(spacegroup, str):
spacegroup = ' '.join(spacegroup.strip().split())
compact_spacegroup = ''.join(spacegroup.split())
else:
raise SpacegroupValueError('`spacegroup` must be of type int or str')
while True:
line1, line2 = _skip_to_nonblank(f, spacegroup, setting)
_no, _symbol = line1.strip().split(None, 1)
_symbol = format_symbol(_symbol)
compact_symbol = ''.join(_symbol.split())
_setting = int(line2.strip().split()[1])
_no = int(_no)
condition = (
(isinstance(spacegroup, int) and _no == spacegroup
and _setting == setting)
or (isinstance(spacegroup, str)
and compact_symbol == compact_spacegroup) and
(setting is None or _setting == setting))
if condition:
namespace = SimpleNamespace()
_read_datafile_entry(namespace, _no, _symbol, _setting, f)
return namespace
else:
_skip_to_blank(f, spacegroup, setting)
def parse_sitesym_element(element):
"""Parses one element from a single site symmetry in the form used
by the International Tables.
Examples:
>>> parse_sitesym_element("x")
([(0, 1)], 0.0)
>>> parse_sitesym_element("-1/2-y")
([(1, -1)], -0.5)
>>> parse_sitesym_element("z+0.25")
([(2, 1)], 0.25)
>>> parse_sitesym_element("x-z+0.5")
([(0, 1), (2, -1)], 0.5)
Parameters
----------
element: str
Site symmetry like "x" or "-y+1/4" or "0.5+z".
Returns
-------
list[tuple[int, int]]
Rotation information in the form '(index, sign)' where index is
0 for "x", 1 for "y" and 2 for "z" and sign is '1' for a positive
entry and '-1' for a negative entry. E.g. "x" is '(0, 1)' and
"-z" is (2, -1).
float
Translation information in fractional space. E.g. "-1/4" is
'-0.25' and "1/2" is '0.5' and "0.75" is '0.75'.
"""
element = element.lower()
is_positive = True
is_frac = False
sng_trans = None
fst_trans = []
snd_trans = []
rot = []
for char in element:
if char == "+":
is_positive = True
elif char == "-":
is_positive = False
elif char == "/":
is_frac = True
elif char in "xyz":
rot.append((ord(char) - ord("x"), 1 if is_positive else -1))
elif char.isdigit() or char == ".":
if sng_trans is None:
sng_trans = 1.0 if is_positive else -1.0
if is_frac:
snd_trans.append(char)
else:
fst_trans.append(char)
trans = 0.0 if not fst_trans else (sng_trans * float("".join(fst_trans)))
if is_frac:
trans /= float("".join(snd_trans))
return rot, trans
def parse_sitesym_single(sym, out_rot, out_trans, sep=",",
force_positive_translation=False):
"""Parses a single site symmetry in the form used by International
Tables and overwrites 'out_rot' and 'out_trans' with data.
Parameters
----------
sym: str
Site symmetry in the form used by International Tables
(e.g. "x,y,z", "y-1/2,x,-z").
out_rot: np.array
A 3x3-integer array representing rotations (changes are made inplace).
out_rot: np.array
A 3-float array representing translations (changes are made inplace).
sep: str
String separator ("," in "x,y,z").
force_positive_translation: bool
Forces fractional translations to be between 0 and 1 (otherwise
negative values might be accepted). Defaults to 'False'.
Returns
-------
Nothing is returned: 'out_rot' and 'out_trans' are changed inplace.
"""
out_rot[:] = 0.0
out_trans[:] = 0.0
for i, element in enumerate(sym.split(sep)):
e_rot_list, e_trans = parse_sitesym_element(element)
for rot_idx, rot_sgn in e_rot_list:
out_rot[i][rot_idx] = rot_sgn
out_trans[i] = \
(e_trans % 1.0) if force_positive_translation else e_trans
def parse_sitesym(symlist, sep=',', force_positive_translation=False):
"""Parses a sequence of site symmetries in the form used by
International Tables and returns corresponding rotation and
translation arrays.
Example:
>>> symlist = [
... 'x,y,z',
... '-y+1/2,x+1/2,z',
... '-y,-x,-z',
... 'x-1/4, y-1/4, -z'
... ]
>>> rot, trans = parse_sitesym(symlist)
>>> rot
array([[[ 1, 0, 0],
[ 0, 1, 0],
[ 0, 0, 1]],
<BLANKLINE>
[[ 0, -1, 0],
[ 1, 0, 0],
[ 0, 0, 1]],
<BLANKLINE>
[[ 0, -1, 0],
[-1, 0, 0],
[ 0, 0, -1]],
<BLANKLINE>
[[ 1, 0, 0],
[ 0, 1, 0],
[ 0, 0, -1]]])
>>> trans
array([[ 0. , 0. , 0. ],
[ 0.5 , 0.5 , 0. ],
[ 0. , 0. , 0. ],
[-0.25, -0.25, 0. ]])
"""
nsym = len(symlist)
rot = np.zeros((nsym, 3, 3), dtype='int')
trans = np.zeros((nsym, 3))
for i, sym in enumerate(symlist):
parse_sitesym_single(
sym, rot[i], trans[i], sep=sep,
force_positive_translation=force_positive_translation)
return rot, trans
def spacegroup_from_data(no=None,
symbol=None,
setting=None,
centrosymmetric=None,
scaled_primitive_cell=None,
reciprocal_cell=None,
subtrans=None,
sitesym=None,
rotations=None,
translations=None,
datafile=None):
"""Manually create a new space group instance. This might be
useful when reading crystal data with its own spacegroup
definitions."""
if no is not None and setting is not None:
spg = Spacegroup(no, setting, datafile)
elif symbol is not None:
spg = Spacegroup(symbol, None, datafile)
else:
raise SpacegroupValueError('either *no* and *setting* '
'or *symbol* must be given')
if not isinstance(sitesym, list):
raise TypeError('sitesym must be a list')
have_sym = False
if centrosymmetric is not None:
spg._centrosymmetric = bool(centrosymmetric)
if scaled_primitive_cell is not None:
spg._scaled_primitive_cell = np.array(scaled_primitive_cell)
if reciprocal_cell is not None:
spg._reciprocal_cell = np.array(reciprocal_cell)
if subtrans is not None:
spg._subtrans = np.atleast_2d(subtrans)
if sitesym is not None:
spg._rotations, spg._translations = parse_sitesym(sitesym)
have_sym = True
if rotations is not None:
spg._rotations = np.atleast_3d(rotations)
have_sym = True
if translations is not None:
spg._translations = np.atleast_2d(translations)
have_sym = True
if have_sym:
if spg._rotations.shape[0] != spg._translations.shape[0]:
raise SpacegroupValueError('inconsistent number of rotations and '
'translations')
return spg
@deprecated(
'`get_spacegroup` has been deprecated due to its misleading output. '
'The returned `Spacegroup` object has symmetry operations for a '
'standard setting regardress of the given `Atoms` object. '
'See https://gitlab.com/ase/ase/-/issues/1534 for details. '
'Please use `ase.spacegroup.symmetrize.check_symmetry` or `spglib` '
'directly to get the symmetry operations for the given `Atoms` object.'
)
def get_spacegroup(atoms, symprec=1e-5):
"""Determine the spacegroup to which belongs the Atoms object.
This requires spglib: https://atztogo.github.io/spglib/ .
.. warning::
The returned ``Spacegroup`` object has symmetry operations for a
standard setting regardless of the given ``Atoms`` object.
See https://gitlab.com/ase/ase/-/issues/1534 for details.
.. deprecated:: 3.24.0
Please use ``ase.spacegroup.symmetrize.check_symmetry`` or ``spglib``
directly to get the symmetry operations for the given ``Atoms`` object.
Parameters:
atoms: Atoms object
Types, positions and unit-cell.
symprec: float
Symmetry tolerance, i.e. distance tolerance in Cartesian
coordinates to find crystal symmetry.
The Spacegroup object is returned.
"""
# Example:
# (We don't include the example in docstring to appease doctests
# when import fails)
# >>> from ase.build import bulk
# >>> atoms = bulk("Cu", "fcc", a=3.6, cubic=True)
# >>> sg = get_spacegroup(atoms)
# >>> sg
# Spacegroup(225, setting=1)
# >>> sg.no
# 225
import spglib
sg = spglib.get_spacegroup((atoms.get_cell(), atoms.get_scaled_positions(),
atoms.get_atomic_numbers()),
symprec=symprec)
if sg is None:
raise RuntimeError('Spacegroup not found')
sg_no = int(sg[sg.find('(') + 1:sg.find(')')])
return Spacegroup(sg_no)
|