File: symmetrize.py

package info (click to toggle)
python-ase 3.24.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 15,448 kB
  • sloc: python: 144,945; xml: 2,728; makefile: 113; javascript: 47
file content (265 lines) | stat: -rw-r--r-- 9,175 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
"""
Provides utility functions for FixSymmetry class
"""
from collections.abc import MutableMapping
from typing import Optional

import numpy as np

from ase.utils import atoms_to_spglib_cell

__all__ = ['refine_symmetry', 'check_symmetry']


def spglib_get_symmetry_dataset(*args, **kwargs):
    """Temporary compatibility adapter around spglib dataset.

    Return an object that allows attribute-based access
    in line with recent spglib.  This allows ASE code to not care about
    older spglib versions.
    """
    import spglib
    dataset = spglib.get_symmetry_dataset(*args, **kwargs)
    if dataset is None:
        return None
    if isinstance(dataset, dict):  # spglib < 2.5.0
        return SpglibDatasetWrapper(dataset)
    return dataset  # spglib >= 2.5.0


class SpglibDatasetWrapper(MutableMapping):
    # Spglib 2.5.0 returns SpglibDataset with deprecated __getitem__.
    # Spglib 2.4.0 and earlier return dict.
    #
    # We use this object to wrap dictionaries such that both types of access
    # work correctly.
    def __init__(self, spglib_dct):
        self._spglib_dct = spglib_dct

    def __getattr__(self, attr):
        return self[attr]

    def __getitem__(self, key):
        return self._spglib_dct[key]

    def __len__(self):
        return len(self._spglib_dct)

    def __iter__(self):
        return iter(self._spglib_dct)

    def __setitem__(self, key, value):
        self._spglib_dct[key] = value

    def __delitem__(self, item):
        del self._spglib_dct[item]


def print_symmetry(symprec, dataset):
    print("ase.spacegroup.symmetrize: prec", symprec,
          "got symmetry group number", dataset.number,
          ", international (Hermann-Mauguin)", dataset.international,
          ", Hall ", dataset.hall)


def refine_symmetry(atoms, symprec=0.01, verbose=False):
    """
    Refine symmetry of an Atoms object

    Parameters
    ----------
    atoms - input Atoms object
    symprec - symmetry precicion
    verbose - if True, print out symmetry information before and after

    Returns
    -------

    spglib dataset

    """
    _check_and_symmetrize_cell(atoms, symprec=symprec, verbose=verbose)
    _check_and_symmetrize_positions(atoms, symprec=symprec, verbose=verbose)
    return check_symmetry(atoms, symprec=1e-4, verbose=verbose)


class IntermediateDatasetError(Exception):
    """The symmetry dataset in `_check_and_symmetrize_positions` can be at odds
    with the original symmetry dataset in `_check_and_symmetrize_cell`.
    This implies a faulty partial symmetrization if not handled by exception."""


def get_symmetrized_atoms(atoms,
                          symprec: float = 0.01,
                          final_symprec: Optional[float] = None):
    """Get new Atoms object with refined symmetries.

    Checks internal consistency of the found symmetries.

    Parameters
    ----------
    atoms : Atoms
        Input atoms object.
    symprec : float
        Symmetry precision used to identify symmetries with spglib.
    final_symprec : float
        Symmetry precision used for testing the symmetrization.

    Returns
    -------
    symatoms : Atoms
        New atoms object symmetrized according to the input symprec.
    """
    atoms = atoms.copy()
    original_dataset = _check_and_symmetrize_cell(atoms, symprec=symprec)
    intermediate_dataset = _check_and_symmetrize_positions(
        atoms, symprec=symprec)
    if intermediate_dataset.number != original_dataset.number:
        raise IntermediateDatasetError()
    final_symprec = final_symprec or symprec
    final_dataset = check_symmetry(atoms, symprec=final_symprec)
    assert final_dataset.number == original_dataset.number
    return atoms, final_dataset


def _check_and_symmetrize_cell(atoms, **kwargs):
    dataset = check_symmetry(atoms, **kwargs)
    _symmetrize_cell(atoms, dataset)
    return dataset


def _symmetrize_cell(atoms, dataset):
    # set actual cell to symmetrized cell vectors by copying
    # transformed and rotated standard cell
    std_cell = dataset.std_lattice
    trans_std_cell = dataset.transformation_matrix.T @ std_cell
    rot_trans_std_cell = trans_std_cell @ dataset.std_rotation_matrix
    atoms.set_cell(rot_trans_std_cell, True)


def _check_and_symmetrize_positions(atoms, *, symprec, **kwargs):
    import spglib
    dataset = check_symmetry(atoms, symprec=symprec, **kwargs)
    # here we are assuming that primitive vectors returned by find_primitive
    #    are compatible with std_lattice returned by get_symmetry_dataset
    res = spglib.find_primitive(atoms_to_spglib_cell(atoms), symprec=symprec)
    _symmetrize_positions(atoms, dataset, res)
    return dataset


def _symmetrize_positions(atoms, dataset, primitive_spglib_cell):
    prim_cell, _prim_scaled_pos, _prim_types = primitive_spglib_cell

    # calculate offset between standard cell and actual cell
    std_cell = dataset.std_lattice
    rot_std_cell = std_cell @ dataset.std_rotation_matrix
    rot_std_pos = dataset.std_positions @ rot_std_cell
    pos = atoms.get_positions()
    dp0 = (pos[list(dataset.mapping_to_primitive).index(0)] - rot_std_pos[
        list(dataset.std_mapping_to_primitive).index(0)])

    # create aligned set of standard cell positions to figure out mapping
    rot_prim_cell = prim_cell @ dataset.std_rotation_matrix
    inv_rot_prim_cell = np.linalg.inv(rot_prim_cell)
    aligned_std_pos = rot_std_pos + dp0

    # find ideal positions from position of corresponding std cell atom +
    #    integer_vec . primitive cell vectors
    mapping_to_primitive = list(dataset.mapping_to_primitive)
    std_mapping_to_primitive = list(dataset.std_mapping_to_primitive)
    pos = atoms.get_positions()
    for i_at in range(len(atoms)):
        std_i_at = std_mapping_to_primitive.index(mapping_to_primitive[i_at])
        dp = aligned_std_pos[std_i_at] - pos[i_at]
        dp_s = dp @ inv_rot_prim_cell
        pos[i_at] = (aligned_std_pos[std_i_at] - np.round(dp_s) @ rot_prim_cell)
    atoms.set_positions(pos)


def check_symmetry(atoms, symprec=1.0e-6, verbose=False):
    """
    Check symmetry of `atoms` with precision `symprec` using `spglib`

    Prints a summary and returns result of `spglib.get_symmetry_dataset()`
    """
    dataset = spglib_get_symmetry_dataset(atoms_to_spglib_cell(atoms),
                                          symprec=symprec)
    if verbose:
        print_symmetry(symprec, dataset)
    return dataset


def is_subgroup(sup_data, sub_data, tol=1e-10):
    """
    Test if spglib dataset `sub_data` is a subgroup of dataset `sup_data`
    """
    for rot1, trns1 in zip(sub_data.rotations, sub_data.translations):
        for rot2, trns2 in zip(sup_data.rotations, sup_data.translations):
            if np.all(rot1 == rot2) and np.linalg.norm(trns1 - trns2) < tol:
                break
        else:
            return False
    return True


def prep_symmetry(atoms, symprec=1.0e-6, verbose=False):
    """
    Prepare `at` for symmetry-preserving minimisation at precision `symprec`

    Returns a tuple `(rotations, translations, symm_map)`
    """
    dataset = spglib_get_symmetry_dataset(atoms_to_spglib_cell(atoms),
                                          symprec=symprec)
    if verbose:
        print_symmetry(symprec, dataset)
    rotations = dataset.rotations.copy()
    translations = dataset.translations.copy()
    symm_map = []
    scaled_pos = atoms.get_scaled_positions()
    for (rot, trans) in zip(rotations, translations):
        this_op_map = [-1] * len(atoms)
        for i_at in range(len(atoms)):
            new_p = rot @ scaled_pos[i_at, :] + trans
            dp = scaled_pos - new_p
            dp -= np.round(dp)
            i_at_map = np.argmin(np.linalg.norm(dp, axis=1))
            this_op_map[i_at] = i_at_map
        symm_map.append(this_op_map)
    return (rotations, translations, symm_map)


def symmetrize_rank1(lattice, inv_lattice, forces, rot, trans, symm_map):
    """
    Return symmetrized forces

    lattice vectors expected as row vectors (same as ASE get_cell() convention),
    inv_lattice is its matrix inverse (reciprocal().T)
    """
    scaled_symmetrized_forces_T = np.zeros(forces.T.shape)

    scaled_forces_T = np.dot(inv_lattice.T, forces.T)
    for (r, t, this_op_map) in zip(rot, trans, symm_map):
        transformed_forces_T = np.dot(r, scaled_forces_T)
        scaled_symmetrized_forces_T[:, this_op_map] += transformed_forces_T
    scaled_symmetrized_forces_T /= len(rot)
    symmetrized_forces = (lattice.T @ scaled_symmetrized_forces_T).T

    return symmetrized_forces


def symmetrize_rank2(lattice, lattice_inv, stress_3_3, rot):
    """
    Return symmetrized stress

    lattice vectors expected as row vectors (same as ASE get_cell() convention),
    inv_lattice is its matrix inverse (reciprocal().T)
    """
    scaled_stress = np.dot(np.dot(lattice, stress_3_3), lattice.T)

    symmetrized_scaled_stress = np.zeros((3, 3))
    for r in rot:
        symmetrized_scaled_stress += np.dot(np.dot(r.T, scaled_stress), r)
    symmetrized_scaled_stress /= len(rot)

    sym = np.dot(np.dot(lattice_inv, symmetrized_scaled_stress), lattice_inv.T)
    return sym