1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
"""
Provides utility functions for FixSymmetry class
"""
from collections.abc import MutableMapping
from typing import Optional
import numpy as np
from ase.utils import atoms_to_spglib_cell
__all__ = ['refine_symmetry', 'check_symmetry']
def spglib_get_symmetry_dataset(*args, **kwargs):
"""Temporary compatibility adapter around spglib dataset.
Return an object that allows attribute-based access
in line with recent spglib. This allows ASE code to not care about
older spglib versions.
"""
import spglib
dataset = spglib.get_symmetry_dataset(*args, **kwargs)
if dataset is None:
return None
if isinstance(dataset, dict): # spglib < 2.5.0
return SpglibDatasetWrapper(dataset)
return dataset # spglib >= 2.5.0
class SpglibDatasetWrapper(MutableMapping):
# Spglib 2.5.0 returns SpglibDataset with deprecated __getitem__.
# Spglib 2.4.0 and earlier return dict.
#
# We use this object to wrap dictionaries such that both types of access
# work correctly.
def __init__(self, spglib_dct):
self._spglib_dct = spglib_dct
def __getattr__(self, attr):
return self[attr]
def __getitem__(self, key):
return self._spglib_dct[key]
def __len__(self):
return len(self._spglib_dct)
def __iter__(self):
return iter(self._spglib_dct)
def __setitem__(self, key, value):
self._spglib_dct[key] = value
def __delitem__(self, item):
del self._spglib_dct[item]
def print_symmetry(symprec, dataset):
print("ase.spacegroup.symmetrize: prec", symprec,
"got symmetry group number", dataset.number,
", international (Hermann-Mauguin)", dataset.international,
", Hall ", dataset.hall)
def refine_symmetry(atoms, symprec=0.01, verbose=False):
"""
Refine symmetry of an Atoms object
Parameters
----------
atoms - input Atoms object
symprec - symmetry precicion
verbose - if True, print out symmetry information before and after
Returns
-------
spglib dataset
"""
_check_and_symmetrize_cell(atoms, symprec=symprec, verbose=verbose)
_check_and_symmetrize_positions(atoms, symprec=symprec, verbose=verbose)
return check_symmetry(atoms, symprec=1e-4, verbose=verbose)
class IntermediateDatasetError(Exception):
"""The symmetry dataset in `_check_and_symmetrize_positions` can be at odds
with the original symmetry dataset in `_check_and_symmetrize_cell`.
This implies a faulty partial symmetrization if not handled by exception."""
def get_symmetrized_atoms(atoms,
symprec: float = 0.01,
final_symprec: Optional[float] = None):
"""Get new Atoms object with refined symmetries.
Checks internal consistency of the found symmetries.
Parameters
----------
atoms : Atoms
Input atoms object.
symprec : float
Symmetry precision used to identify symmetries with spglib.
final_symprec : float
Symmetry precision used for testing the symmetrization.
Returns
-------
symatoms : Atoms
New atoms object symmetrized according to the input symprec.
"""
atoms = atoms.copy()
original_dataset = _check_and_symmetrize_cell(atoms, symprec=symprec)
intermediate_dataset = _check_and_symmetrize_positions(
atoms, symprec=symprec)
if intermediate_dataset.number != original_dataset.number:
raise IntermediateDatasetError()
final_symprec = final_symprec or symprec
final_dataset = check_symmetry(atoms, symprec=final_symprec)
assert final_dataset.number == original_dataset.number
return atoms, final_dataset
def _check_and_symmetrize_cell(atoms, **kwargs):
dataset = check_symmetry(atoms, **kwargs)
_symmetrize_cell(atoms, dataset)
return dataset
def _symmetrize_cell(atoms, dataset):
# set actual cell to symmetrized cell vectors by copying
# transformed and rotated standard cell
std_cell = dataset.std_lattice
trans_std_cell = dataset.transformation_matrix.T @ std_cell
rot_trans_std_cell = trans_std_cell @ dataset.std_rotation_matrix
atoms.set_cell(rot_trans_std_cell, True)
def _check_and_symmetrize_positions(atoms, *, symprec, **kwargs):
import spglib
dataset = check_symmetry(atoms, symprec=symprec, **kwargs)
# here we are assuming that primitive vectors returned by find_primitive
# are compatible with std_lattice returned by get_symmetry_dataset
res = spglib.find_primitive(atoms_to_spglib_cell(atoms), symprec=symprec)
_symmetrize_positions(atoms, dataset, res)
return dataset
def _symmetrize_positions(atoms, dataset, primitive_spglib_cell):
prim_cell, _prim_scaled_pos, _prim_types = primitive_spglib_cell
# calculate offset between standard cell and actual cell
std_cell = dataset.std_lattice
rot_std_cell = std_cell @ dataset.std_rotation_matrix
rot_std_pos = dataset.std_positions @ rot_std_cell
pos = atoms.get_positions()
dp0 = (pos[list(dataset.mapping_to_primitive).index(0)] - rot_std_pos[
list(dataset.std_mapping_to_primitive).index(0)])
# create aligned set of standard cell positions to figure out mapping
rot_prim_cell = prim_cell @ dataset.std_rotation_matrix
inv_rot_prim_cell = np.linalg.inv(rot_prim_cell)
aligned_std_pos = rot_std_pos + dp0
# find ideal positions from position of corresponding std cell atom +
# integer_vec . primitive cell vectors
mapping_to_primitive = list(dataset.mapping_to_primitive)
std_mapping_to_primitive = list(dataset.std_mapping_to_primitive)
pos = atoms.get_positions()
for i_at in range(len(atoms)):
std_i_at = std_mapping_to_primitive.index(mapping_to_primitive[i_at])
dp = aligned_std_pos[std_i_at] - pos[i_at]
dp_s = dp @ inv_rot_prim_cell
pos[i_at] = (aligned_std_pos[std_i_at] - np.round(dp_s) @ rot_prim_cell)
atoms.set_positions(pos)
def check_symmetry(atoms, symprec=1.0e-6, verbose=False):
"""
Check symmetry of `atoms` with precision `symprec` using `spglib`
Prints a summary and returns result of `spglib.get_symmetry_dataset()`
"""
dataset = spglib_get_symmetry_dataset(atoms_to_spglib_cell(atoms),
symprec=symprec)
if verbose:
print_symmetry(symprec, dataset)
return dataset
def is_subgroup(sup_data, sub_data, tol=1e-10):
"""
Test if spglib dataset `sub_data` is a subgroup of dataset `sup_data`
"""
for rot1, trns1 in zip(sub_data.rotations, sub_data.translations):
for rot2, trns2 in zip(sup_data.rotations, sup_data.translations):
if np.all(rot1 == rot2) and np.linalg.norm(trns1 - trns2) < tol:
break
else:
return False
return True
def prep_symmetry(atoms, symprec=1.0e-6, verbose=False):
"""
Prepare `at` for symmetry-preserving minimisation at precision `symprec`
Returns a tuple `(rotations, translations, symm_map)`
"""
dataset = spglib_get_symmetry_dataset(atoms_to_spglib_cell(atoms),
symprec=symprec)
if verbose:
print_symmetry(symprec, dataset)
rotations = dataset.rotations.copy()
translations = dataset.translations.copy()
symm_map = []
scaled_pos = atoms.get_scaled_positions()
for (rot, trans) in zip(rotations, translations):
this_op_map = [-1] * len(atoms)
for i_at in range(len(atoms)):
new_p = rot @ scaled_pos[i_at, :] + trans
dp = scaled_pos - new_p
dp -= np.round(dp)
i_at_map = np.argmin(np.linalg.norm(dp, axis=1))
this_op_map[i_at] = i_at_map
symm_map.append(this_op_map)
return (rotations, translations, symm_map)
def symmetrize_rank1(lattice, inv_lattice, forces, rot, trans, symm_map):
"""
Return symmetrized forces
lattice vectors expected as row vectors (same as ASE get_cell() convention),
inv_lattice is its matrix inverse (reciprocal().T)
"""
scaled_symmetrized_forces_T = np.zeros(forces.T.shape)
scaled_forces_T = np.dot(inv_lattice.T, forces.T)
for (r, t, this_op_map) in zip(rot, trans, symm_map):
transformed_forces_T = np.dot(r, scaled_forces_T)
scaled_symmetrized_forces_T[:, this_op_map] += transformed_forces_T
scaled_symmetrized_forces_T /= len(rot)
symmetrized_forces = (lattice.T @ scaled_symmetrized_forces_T).T
return symmetrized_forces
def symmetrize_rank2(lattice, lattice_inv, stress_3_3, rot):
"""
Return symmetrized stress
lattice vectors expected as row vectors (same as ASE get_cell() convention),
inv_lattice is its matrix inverse (reciprocal().T)
"""
scaled_stress = np.dot(np.dot(lattice, stress_3_3), lattice.T)
symmetrized_scaled_stress = np.zeros((3, 3))
for r in rot:
symmetrized_scaled_stress += np.dot(np.dot(r.T, scaled_stress), r)
symmetrized_scaled_stress /= len(rot)
sym = np.dot(np.dot(lattice_inv, symmetrized_scaled_stress), lattice_inv.T)
return sym
|