1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
import os
import numpy as np
from ase import Atoms, units
from ase.build import bulk, molecule
from ase.calculators.emt import EMT
from ase.calculators.lj import LennardJones
from ase.io.trajectory import Trajectory
from ase.phonons import Phonons
def check_set_atoms(atoms, set_atoms, expected_atoms):
""" Perform a test that .set_atoms() only displaces the expected atoms. """
atoms.calc = EMT()
phonons = Phonons(atoms, EMT())
phonons.set_atoms(set_atoms)
# TODO: For now, because there is no public API to iterate over/inspect
# displacements, we run and check the number of files in the cache.
# Later when the requisite API exists, we should use it both to
# check the actual atom indices and to avoid computation.
phonons.run()
assert len(phonons.cache) == 6 * len(expected_atoms) + 1
def test_set_atoms_indices(testdir):
check_set_atoms(molecule('CO2'), set_atoms=[0, 1], expected_atoms=[0, 1])
def test_set_atoms_symbol(testdir):
check_set_atoms(molecule('CO2'), set_atoms=['O'], expected_atoms=[1, 2])
def test_check_eq_forces(testdir):
atoms = bulk('C')
atoms.calc = EMT()
phonons = Phonons(atoms, EMT(), supercell=(1, 2, 1))
phonons.run()
fmin, fmax, _i_min, _i_max = phonons.check_eq_forces()
assert fmin < fmax
# Regression test for #953; data stored for eq should resemble data for
# displacements
def test_check_consistent_format(testdir):
atoms = molecule('H2')
atoms.calc = EMT()
phonons = Phonons(atoms, EMT())
phonons.run()
# Check that the data stored for `eq` is shaped like the data stored for
# displacements.
eq_data = phonons.cache['eq']
disp_data = phonons.cache['0x-']
assert isinstance(eq_data, dict) and isinstance(disp_data, dict)
assert set(eq_data) == set(disp_data), "dict keys mismatch"
for array_key in eq_data:
assert eq_data[array_key].shape == disp_data[array_key].shape, array_key
def test_get_band_structure_with_modes(testdir):
atoms = bulk('Al', 'fcc', a=4.05)
N = 7
npoints = 100 # k-points in band path
natoms = len(atoms)
ph = Phonons(atoms, EMT(), supercell=(N, N, N), delta=0.05)
ph.run()
ph.read(acoustic=True)
ph.clean()
path = atoms.cell.bandpath('GXULGK', npoints=npoints)
band_structure, modes = ph.get_band_structure(path,
modes=True,
verbose=False)
# Assertions
assert band_structure is not None, "Band structure should not be None"
assert modes is not None, "Modes should not be None"
assert modes.ndim == 4, "Modes should be a 4-dimensional numpy array"
assert modes.shape == (npoints, 3 * natoms, natoms, 3), \
"Modes should have shape (k-points, nbands, natoms, 3)"
def test_frequencies_amplitudes(testdir):
"""Test frequencies and amplitudes of the phonon modes.
The calculation is done for a diatomic chain of atoms
with different masses and known spring constants, so
frequencies and mode amplitudes can be compared with
the theoretical values. We use Cu and O with a
Lennard-Jones potential.
"""
# Reasonable Lennard-Jones parameters taken from the
# OpenKIM project, DOI: 10.25950/962b4967
LJ_epsilon_O = 5.1264700
LJ_sigma_O = 1.1759900
LJ_epsilon_Cu = 2.0446300
LJ_sigma_Cu = 2.3519700
LJ_epsilon = np.sqrt(LJ_epsilon_O * LJ_epsilon_Cu)
LJ_sigma = (LJ_sigma_O + LJ_sigma_Cu) / 2
# Equilibrium distance
d0 = 2**(1 / 6) * LJ_sigma
# Spring constant
C = 36 * 2**(2 / 3) * LJ_epsilon / LJ_sigma**2
print(f'LJ epsilon: {LJ_epsilon:.5f} eV sigma: {LJ_sigma:.5f} Å')
print(f'Bond length d0 = {d0:.5f} Å. C = {C:.5f} eV / Å^2')
# Make chain of Cu-O atoms
pos = np.array(
[[0, 0, 0],
[d0, 0, 0]]
)
atoms = Atoms(
symbols='CuO',
positions=pos,
cell=[2 * d0, 10., 10.],
pbc=(True, False, False)
)
atoms.center()
calc = LennardJones(sigma=LJ_sigma, epsilon=LJ_epsilon, rc=1.5 * d0)
print('Calculating phonons')
N = 7
ph = Phonons(atoms, calc, supercell=(N, 1, 1),
delta=0.005, name='phonon_CuO')
ph.run()
assert ph.check_eq_forces()[1] < 1e-9, "System is not at equilibrium"
# Read forces and assemble the dynamical matrix
ph.read(acoustic=True)
ph.clean()
path = atoms.cell.bandpath(npoints=50, pbc=[1, 0, 0])
kpoints = path.kpts
gamma_point = path.special_points['G']
x_point = path.special_points['X']
omegas, us = ph.band_structure(kpoints, modes=True)
e_gamma_O = omegas[0, 5]
e_X_O = omegas[-1, 5]
e_X_A = omegas[-1, 4]
(m1, m2) = atoms.get_masses()
hbar = units._hbar * units.J * units.second
e_gamma_O_th = hbar * np.sqrt(2 * C * (1 / m1 + 1 / m2))
e_X_O_th = hbar * np.sqrt(2 * C / m2)
e_X_A_th = hbar * np.sqrt(2 * C / m1)
print()
print('ENERGIES Numerical Analytical')
print(f'Gamma, O: {e_gamma_O:<9.5f} {e_gamma_O_th:<9.5f} eV')
print(f'Zone edge, O: {e_X_O:<9.5f} {e_X_O_th:<9.5f} eV')
print(f'Zone edge, A: {e_X_A:<9.5f} {e_X_A_th:<9.5f} eV')
assert np.isclose(e_gamma_O, e_gamma_O_th, atol=1e-4)
assert np.isclose(e_X_O, e_X_O_th, atol=1e-4)
assert np.isclose(e_X_A, e_X_A_th, atol=1e-4)
print()
mr = m1 / m2
print(f'Mass ratios: {mr:.5f} {m2 / m1:.5f}')
print('Amplitude ratios, Optical mode at gamma point:')
amp_gamma_O = us[0, 5, 1, 0] / us[0, 5, 0, 0]
print(amp_gamma_O)
assert np.isclose(amp_gamma_O, -mr, atol=1e-5)
print('Amplitude ratios, Optical mode NEAR gamma point:')
amp_nearG_O = us[1, 5, 1, 0] / us[1, 5, 0, 0]
print(amp_nearG_O, np.abs(amp_nearG_O))
assert np.isclose(np.abs(amp_nearG_O), mr, atol=1e-2)
print('Amplitude ratios, Acoustic mode NEAR gamma point:')
amp_nearG_A = us[1, 4, 1, 0] / us[1, 4, 0, 0]
print(amp_nearG_A, np.abs(amp_nearG_A))
assert np.isclose(np.abs(amp_nearG_A), 1.0, atol=1e-3)
# Test of absolute amplitudes
# This is done by testing that the kinetic energy of each
# mode is 1/2 k T
repeat = 8
T = 300
checkmodes = (
(gamma_point, 5, e_gamma_O),
(x_point, 5, e_X_O),
(x_point, 4, e_X_A),
)
for kk, br, hbaromega in checkmodes:
print(f'Ckecking k-point {kk} branch {br}')
ph.write_modes(kk, branches=(br,),
repeat=(repeat, 1, 1), kT=T * units.kB)
filename = f'{ph.name}.mode.{br}.traj'
pos = []
with Trajectory(filename) as traj:
for a in traj:
pos.append(a.get_positions())
masses = a.get_masses()
os.unlink(filename)
# Now calculate the velocities from the differences in the positions.
# The first frame should be compared to the last.
delta_t = 2 * np.pi * hbar / (hbaromega * len(pos))
vel = []
ekin = []
for i in range(len(pos)):
v = (pos[i] - pos[i - 1]) / delta_t
vel.append(v)
ek = (0.5 * masses * (v * v).sum(axis=1)).sum() / repeat
ekin.append(ek)
ekin_avg = np.mean(ekin)
ekin_exp = units.kB * T / 2
print(f"Avg. kinetic energy: {ekin_avg} eV - expected {ekin_exp} eV")
assert np.isclose(ekin_avg, ekin_exp, rtol=0.01)
def test_partial_dos(testdir):
"""Test partial phonon DOS.
Tests that the partial phonon densities of states sum
up to the total density of states.
"""
# Reasonable Lennard-Jones parameters taken from the
# OpenKIM project, DOI: 10.25950/962b4967
Epsilon_Zn, Sigma_Zn = 0.1915460, 2.1737900
Epsilon_S, Sigma_S = 4.3692700, 1.8708900
LJ_epsilon = np.sqrt(Epsilon_Zn * Epsilon_S)
LJ_sigma = (Sigma_Zn + Sigma_S) / 2
# Equilibrium distance
d0 = 2**(1 / 6) * LJ_sigma
latconst = d0 * np.sqrt(2)
cutoff = d0 * (1 + np.sqrt(2)) / 2 # Between first and second neighbor
# Set up a zincblende structure with a reasonable lattice constant
atoms = bulk('ZnS', 'zincblende', a=latconst)
calc = LennardJones(sigma=LJ_sigma, epsilon=LJ_epsilon, rc=cutoff)
# Calculating phonons
N = 3
ph = Phonons(atoms, calc, supercell=(N, N, N),
delta=0.005, name='phonon_ZnS')
ph.run()
assert ph.check_eq_forces()[1] < 1e-9, "System is not at equilibrium"
# Read forces and assemble the dynamical matrix
ph.read(acoustic=True)
ph.clean()
# Analyzing phonons
kpts = (10, 10, 10)
w = 3e-2
dos = ph.get_dos(kpts=kpts).sample_grid(npts=500, width=w)
dosZn = ph.get_dos(kpts=kpts, indices=(0,)).sample_grid(npts=500, width=w)
dosS = ph.get_dos(kpts=kpts, indices=(1,)).sample_grid(npts=500, width=w)
dosZn_array = dosZn.get_weights()
dosS_array = dosS.get_weights()
dosTotal_array = dos.get_weights()
assert np.allclose(dosTotal_array, dosS_array + dosZn_array)
|