1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
|
import numpy as np
import pytest
from ase import Atoms
from ase.build import bulk, molecule
from ase.calculators.emt import EMT
from ase.optimize import QuasiNewton
from ase.phonons import Phonons
from ase.thermochemistry import (
CrystalThermo,
HarmonicThermo,
HinderedThermo,
IdealGasThermo,
)
from ase.vibrations import Vibrations
def test_ideal_gas_thermo_n2(testdir):
"We do a basic test on N2"
atoms = Atoms("N2", positions=[(0, 0, 0), (0, 0, 1.1)])
atoms.calc = EMT()
QuasiNewton(atoms).run(fmax=0.01)
energy = atoms.get_potential_energy()
vib = Vibrations(atoms, name="igt-vib1")
vib.run()
vib_energies = vib.get_energies()
assert len(vib_energies) == 6
assert vib_energies[0] == pytest.approx(0.0, abs=1e-8)
assert vib_energies[-1] == pytest.approx(1.52647479e-01)
# ---------------------
# # meV cm^-1
# ---------------------
# 0 0.0 0.0 <--- remove!
# 1 0.0 0.0 <--- remove!
# 2 0.0 0.0 <--- remove!
# 3 1.7 13.5 <--- remove!
# 4 1.7 13.5 <--- remove!
# 5 152.6 1231.2
# ---------------------
thermo = IdealGasThermo(
vib_energies=vib_energies,
geometry="linear",
atoms=atoms,
symmetrynumber=2,
spin=0,
potentialenergy=energy,
)
assert len(thermo.vib_energies) == 1
assert thermo.vib_energies[0] == vib_energies[-1]
assert thermo.geometry == "linear"
assert thermo.get_ZPE_correction() == pytest.approx(0.07632373926263808)
assert thermo.get_enthalpy(1000) == pytest.approx(0.6719935644272014)
assert thermo.get_entropy(1000, 1e8) == pytest.approx(0.0017861226676818658)
assert thermo.get_gibbs_energy(1000, 1e8) == pytest.approx(
thermo.get_enthalpy(1000) - 1000 * thermo.get_entropy(1000, 1e8)
)
def ideal_gas_thermo_ch3(
vib_energies,
geometry="nonlinear",
atoms=None,
symmetrynumber=6,
potentialenergy=0.0,
spin=0.5,
ignore_imag_modes=False,
):
if atoms is None:
atoms = molecule("CH3")
return IdealGasThermo(
vib_energies=vib_energies,
geometry=geometry,
atoms=atoms,
symmetrynumber=symmetrynumber,
potentialenergy=potentialenergy,
spin=spin,
ignore_imag_modes=ignore_imag_modes,
)
CH3_THERMO = {
"ZPE": 1.185,
"enthalpy": 10.610695269124156,
"entropy": 0.0019310086280219891,
"gibbs": 8.678687641495167,
}
def test_ideal_gas_thermo_ch3(testdir):
"""
Now we try something a bit harder. Let's consider a
CH3 molecule, such that there should be 3*4-6 = 6 modes
for calculating the thermochemistry. We will also provide
the modes in an unsorted list to make sure the correct
values are cut. Note that these vibrational energies
are simply toy values.
Input: [1.0, 0.05, 0.08, 0.1, 0.2, 0.3, 0.4, 0.35, 0.12]
Expected: [0.12, 0.2, 0.3, 0.35, 0.4, 1.0]
"""
thermo = ideal_gas_thermo_ch3(
vib_energies=[1.0, 0.05, 0.08, 0.1, 0.2, 0.3, 0.4, 0.35, 0.12],
potentialenergy=9,
)
assert len(thermo.vib_energies) == 6
assert list(thermo.vib_energies) == [0.12, 0.2, 0.3, 0.35, 0.4, 1.0]
assert thermo.geometry == "nonlinear"
assert thermo.get_ZPE_correction() == pytest.approx(CH3_THERMO["ZPE"])
assert thermo.get_enthalpy(1000) == pytest.approx(CH3_THERMO["enthalpy"])
assert thermo.get_entropy(1000, 1e8) == pytest.approx(CH3_THERMO["entropy"])
assert thermo.get_gibbs_energy(1000, 1e8) == pytest.approx(
thermo.get_enthalpy(1000) - 1000 * thermo.get_entropy(1000, 1e8)
)
def test_ideal_gas_thermo_ch3_v2(testdir):
"""
Let's do the same as above but provide only
the 6 modes to use.
Input: [0.12, 0.2, 0.3, 0.35, 0.4, 1.0]
Expected: [0.12, 0.2, 0.3, 0.35, 0.4, 1.0]
"""
thermo = ideal_gas_thermo_ch3(
vib_energies=[0.12, 0.2, 0.3, 0.35, 0.4, 1.0], potentialenergy=9
)
assert len(thermo.vib_energies) == 6
assert list(thermo.vib_energies) == [0.12, 0.2, 0.3, 0.35, 0.4, 1.0]
assert thermo.geometry == "nonlinear"
assert thermo.get_ZPE_correction() == pytest.approx(CH3_THERMO["ZPE"])
assert thermo.get_enthalpy(1000) == pytest.approx(CH3_THERMO["enthalpy"])
assert thermo.get_entropy(1000, 1e8) == pytest.approx(CH3_THERMO["entropy"])
assert thermo.get_gibbs_energy(1000, 1e8) == pytest.approx(
thermo.get_enthalpy(1000) - 1000 * thermo.get_entropy(1000, 1e8)
)
assert thermo.n_imag == 0
def test_ideal_gas_thermo_ch3_v3(testdir):
"""
Now we give the module a more complicated set of
vibrational frequencies to deal with to make sure
the correct values are cut. This structure is not a
minimum or TS and has several imaginary modes. However
if we cut the first 6 modes, it'd look like all are
real when they are not. We need to cut based on
np.abs() of the vibrational energies.
"""
# ---------------------
# # meV cm^-1
# ---------------------
# 0 63.8i 514.8i
# 1 63.3i 510.7i
# 2 42.4i 342.3i
# 3 5.3i 43.1i <--- remove!
# 4 0.0 0.0 <--- remove!
# 5 0.0 0.0 <--- remove!
# 6 0.0 0.0 <--- remove!
# 7 5.6 45.5 <--- remove!
# 8 6.0 48.1 <--- remove!
# 9 507.9 4096.1
# 10 547.2 4413.8
# 11 547.7 4417.3
# ---------------------
vib_energies = [
63.8j,
63.3j,
42.4j,
5.3j,
0.0,
0.0,
0.0,
5.6,
6.0,
507.9,
547.2,
547.7,
]
with pytest.raises(ValueError):
# Imaginary frequencies present!!!
thermo = ideal_gas_thermo_ch3(vib_energies=vib_energies)
# Same as above, but let's try ignoring the
# imag modes. This should just use: 507.9, 547.2, 547.7
with pytest.warns(UserWarning):
thermo = ideal_gas_thermo_ch3(vib_energies=vib_energies,
ignore_imag_modes=True)
assert list(thermo.vib_energies) == [507.9, 547.2, 547.7]
assert thermo.n_imag == 3
def test_ideal_gas_thermo_ch3_v4(testdir):
"""
Let's do another test like above, just for thoroughness.
Again, this is not a minimum or TS and has several
imaginary modes.
"""
atoms = molecule("CH3")
atoms.calc = EMT()
vib = Vibrations(atoms, name="igt-vib2")
vib.run()
vib_energies = vib.get_energies()
assert len(vib_energies) == 12
assert vib_energies[0] == pytest.approx(0.09599611291404943j)
assert vib_energies[-1] == pytest.approx(0.39035516516367375)
# ---------------------
# # meV cm^-1
# ---------------------
# 0 96.0i 774.3i
# 1 89.4i 721.0i
# 2 89.3i 720.4i
# 3 85.5i 689.7i <-- remove!
# 4 85.4i 689.1i <-- remove!
# 5 85.4i 689.1i <-- remove!
# 6 0.0 0.0 <-- remove!
# 7 0.0 0.0 <-- remove!
# 8 0.0 0.0 <-- remove!
# 9 369.4 2979.1
# 10 369.4 2979.3
# 11 390.4 3148.4
# ---------------------
with pytest.raises(ValueError):
ideal_gas_thermo_ch3(vib_energies=vib_energies)
with pytest.raises(ValueError):
ideal_gas_thermo_ch3(vib_energies=[100 + 0.1j] * len(vib_energies))
VIB_ENERGIES_HARMONIC = np.array(
[0.00959394 + 0.0j, 0.00959394 + 0.0j, 0.01741657 + 0.0j]
)
def harmonic_thermo(
vib_energies=None,
potentialenergy=4.120517148154894,
ignore_imag_modes=False,
):
return HarmonicThermo(
vib_energies=vib_energies if vib_energies else VIB_ENERGIES_HARMONIC,
potentialenergy=potentialenergy,
ignore_imag_modes=ignore_imag_modes,
)
HELMHOLTZ_HARMONIC = 4.060698673180732
def test_harmonic_thermo(testdir):
"Basic test of harmonic thermochemistry"
thermo = harmonic_thermo()
helmholtz = thermo.get_helmholtz_energy(temperature=298.15)
assert helmholtz == pytest.approx(HELMHOLTZ_HARMONIC)
def test_harmonic_thermo_v2(testdir):
"Test with a reversed list giving the same results"
vib_energies = list(VIB_ENERGIES_HARMONIC)
vib_energies.sort(reverse=True)
thermo = harmonic_thermo(vib_energies=vib_energies)
helmholtz = thermo.get_helmholtz_energy(temperature=298.15)
assert helmholtz == pytest.approx(HELMHOLTZ_HARMONIC)
assert thermo.n_imag == 0
def test_harmonic_thermo_v3(testdir):
"Test that a proper error is raised with imag modes"
with pytest.raises(ValueError):
harmonic_thermo(vib_energies=[10j])
def test_harmonic_thermo_v4(testdir):
"Test that a proper warning is raised with non-crucial imag modes"
with pytest.warns(UserWarning):
thermo = harmonic_thermo(
vib_energies=list(VIB_ENERGIES_HARMONIC) + [10j],
ignore_imag_modes=True
)
helmholtz = thermo.get_helmholtz_energy(temperature=298.15)
assert helmholtz == pytest.approx(HELMHOLTZ_HARMONIC)
assert thermo.n_imag == 1
def test_crystal_thermo(asap3, testdir):
atoms = bulk("Al", "fcc", a=4.05)
calc = asap3.EMT()
atoms.calc = calc
energy = atoms.get_potential_energy()
# Phonon calculator
N = 7
ph = Phonons(atoms, calc, supercell=(N, N, N), delta=0.05)
ph.run()
ph.read(acoustic=True)
dos = ph.get_dos(kpts=(4, 4, 4)).sample_grid(npts=30, width=5e-4)
phonon_energies = dos.get_energies()
phonon_DOS = dos.get_weights()
thermo = CrystalThermo(
phonon_energies=phonon_energies,
phonon_DOS=phonon_DOS,
potentialenergy=energy,
formula_units=4,
)
thermo.get_helmholtz_energy(temperature=298.15)
VIB_ENERGIES_HINDERED = (
np.array(
[
3049.060670,
3040.796863,
3001.661338,
2997.961647,
2866.153162,
2750.855460,
1436.792655,
1431.413595,
1415.952186,
1395.726300,
1358.412432,
1335.922737,
1167.009954,
1142.126116,
1013.918680,
803.400098,
783.026031,
310.448278,
136.112935,
112.939853,
103.926392,
77.262869,
60.278004,
25.825447,
]
)
/ 8065.54429
)
def hindered_thermo(
atoms=None,
vib_energies=None,
trans_barrier_energy=0.049313,
rot_barrier_energy=0.017675,
sitedensity=1.5e15,
rotationalminima=6,
symmetrynumber=1,
mass=30.07,
inertia=73.149,
ignore_imag_modes=False,
):
return HinderedThermo(
atoms=atoms,
vib_energies=vib_energies if vib_energies else VIB_ENERGIES_HINDERED,
trans_barrier_energy=trans_barrier_energy,
rot_barrier_energy=rot_barrier_energy,
sitedensity=sitedensity,
rotationalminima=rotationalminima,
symmetrynumber=symmetrynumber,
mass=mass,
inertia=inertia,
ignore_imag_modes=ignore_imag_modes,
)
HELMHOLTZ_HINDERED = 1.5932242071261076
def test_hindered_thermo1():
"""
Hindered translator / rotor.
(Taken directly from the example given in the documentation.)
"""
thermo = hindered_thermo()
assert len(thermo.vib_energies) == 21
helmholtz = thermo.get_helmholtz_energy(temperature=298.15)
assert helmholtz == pytest.approx(HELMHOLTZ_HINDERED)
def test_hindered_thermo2():
"""
Now reverse the vib energies and make sure results are the same
"""
vib_energies = list(VIB_ENERGIES_HINDERED)
vib_energies.sort(reverse=True)
thermo = hindered_thermo(vib_energies=vib_energies)
helmholtz = thermo.get_helmholtz_energy(temperature=298.15)
assert len(thermo.vib_energies) == 21
assert helmholtz == pytest.approx(HELMHOLTZ_HINDERED)
assert thermo.n_imag == 0
def test_hindered_thermo3():
"Now add an imaginary mode and make sure it is removed"
with pytest.warns(UserWarning):
thermo = hindered_thermo(
vib_energies=list(VIB_ENERGIES_HINDERED) + [10j],
ignore_imag_modes=True
)
assert thermo.get_helmholtz_energy(temperature=298.15) == pytest.approx(
HELMHOLTZ_HINDERED
)
assert thermo.n_imag == 1
def test_hindered_thermo4():
"Make sure a ValueError is raised if imag modes are present"
with pytest.raises(ValueError):
hindered_thermo(vib_energies=[100 + 0.1j] * 24)
def test_hindered_thermo5():
"Make sure appropriate amount are cut"
atoms = bulk("Cu") * (2, 2, 2)
thermo = hindered_thermo(atoms=atoms)
assert len(thermo.vib_energies) == 3 * len(atoms) - 3
|