1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
.. testsetup::
# WL.py
import os
import runpy
os.chdir('gettingstarted/manipulating_atoms')
runpy.run_path('WL.py')
.. _atommanip:
==================
Manipulating atoms
==================
Ag adatom on Ni slab
====================
We will set up a one layer slab of four Ni atoms with one Ag adatom.
Define the slab atoms:
>>> from math import sqrt
>>> from ase import Atoms
>>> a = 3.55
>>> atoms = Atoms('Ni4',
... cell=[sqrt(2) * a, sqrt(2) * a, 1.0, 90, 90, 120],
... pbc=(1, 1, 0),
... scaled_positions=[(0, 0, 0),
... (0.5, 0, 0),
... (0, 0.5, 0),
... (0.5, 0.5, 0)])
>>> atoms.center(vacuum=5.0, axis=2)
Have a look at the cell and positions of the atoms:
>>> atoms.cell
Cell([[5.020458146424487, 0.0, 0.0], [-2.5102290732122423, 4.347844293440141, 0.0], [0.0, 0.0, 10.0]])
>>> atoms.positions
array([[ 0. , 0. , 5. ],
[ 2.51022907, 0. , 5. ],
[-1.25511454, 2.17392215, 5. ],
[ 1.25511454, 2.17392215, 5. ]])
>>> atoms[0]
Atom('Ni', [0.0, 0.0, 5.0], index=0)
Write the structure to a file and plot the whole system by bringing up the
:mod:`ase.gui`:
>>> from ase.visualize import view
>>> atoms.write('slab.xyz')
>>> view(atoms)
.. image:: a1.png
Within the viewer (called :mod:`ase gui <ase.gui>`) it is possible to repeat
the unit cell in all three directions
(using the :menuselection:`Repeat --> View` window).
From the command line, use ``ase gui -r 3,3,2 slab.xyz``.
.. image:: a2.png
We now add an adatom in a three-fold site at a height of ``h=1.9`` Å:
>>> h = 1.9
>>> relative = (1 / 6, 1 / 6, 0.5)
>>> absolute = np.dot(relative, atoms.cell) + (0, 0, h)
>>> atoms.append('Ag')
>>> atoms.positions[-1] = absolute
The structure now looks like this:
>>> view(atoms)
.. image:: a3.png
Interface building
==================
Now, we will make an interface with Ni(111) and water.
First we need a layer of water. One layer of water is constructed in this
script :download:`WL.py`, and saved in the file ``WL.traj``. Now run the
``WL.py`` script and then read the atoms object from the traj file:
>>> from ase.io import read
>>> W = read('WL.traj')
Lets take a look at the structure using view.
.. image:: WL.png
and let's look at the unit cell.
>>> W.cell
Cell([8.490373, 4.901919, 26.93236])
We will need a Ni(111) slab which matches the water as closely as possible.
A 2x4 orthogonal fcc111 supercell should be good enough.
>>> from ase.build import fcc111
>>> slab = fcc111('Ni', size=[2, 4, 3], a=3.55, orthogonal=True)
.. image:: Ni111slab2x2.png
>>> slab.cell
Cell([5.020458146424487, 8.695688586880282, 0.0])
Looking at the two unit cells, we can see that they match with around 2
percent difference, if we rotate one of the cells 90 degrees in the plane.
Let's rotate the cell:
>>> W.cell = [W.cell[1, 1], W.cell[0, 0], 0.0]
.. image:: WL_rot_c.png
Let's also :meth:`~ase.Atoms.rotate` the molecules:
>>> W.rotate(90, 'z', center=(0, 0, 0))
.. image:: WL_rot_a.png
Now we can wrap the atoms into the cell
>>> W.wrap()
.. image:: WL_wrap.png
The :meth:`~ase.Atoms.wrap` method only works if periodic boundary
conditions are enabled. We have a 2 percent lattice mismatch between Ni(111)
and the water, so we scale the water in the plane to match the cell of the
slab.
The argument *scale_atoms=True* indicates that the atomic positions should be
scaled with the unit cell. The default is *scale_atoms=False* indicating that
the cartesian coordinates remain the same when the cell is changed.
>>> W.set_cell(slab.cell, scale_atoms=True)
>>> zmin = W.positions[:, 2].min()
>>> zmax = slab.positions[:, 2].max()
>>> W.positions += (0, 0, zmax - zmin + 1.5)
Finally we use extend to copy the water onto the slab:
>>> interface = slab + W
>>> interface.center(vacuum=6, axis=2)
>>> interface.write('NiH2O.traj')
.. image:: interface-h2o-wrap.png
Adding two atoms objects will take the positions from both and the cell and
boundary conditions from the first.
|