1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
.. _surface:
Introduction: Nitrogen on copper
================================
This section gives a quick (and incomplete) overview of what ASE can do.
We will calculate the adsorption energy of a nitrogen
molecule on a copper surface.
This is done by calculating the total
energy for the isolated slab and for the isolated molecule. The
adsorbate is then added to the slab and relaxed, and the total energy
for this composite system is calculated. The adsorption energy is
obtained as the sum of the isolated energies minus the energy of the
composite system.
Here is a picture of the system after the relaxation:
.. image:: surface.png
Please have a look at the following script :download:`N2Cu.py`:
.. literalinclude:: N2Cu.py
Assuming you have ASE setup correctly (:ref:`download_and_install`)
run the script::
python N2Cu.py
Please read below what the script does.
Atoms
-----
The :class:`~ase.Atoms` object is a collection of atoms. Here
is how to define a N2 molecule by directly specifying the position of
two nitrogen atoms::
>>> from ase import Atoms
>>> d = 1.10
>>> molecule = Atoms('2N', positions=[(0., 0., 0.), (0., 0., d)])
You can also build crystals using, for example, the lattice module
which returns :class:`~ase.Atoms` objects corresponding to
common crystal structures. Let us make a Cu (111) surface::
>>> from ase.build import fcc111
>>> slab = fcc111('Cu', size=(4,4,2), vacuum=10.0)
Adding calculator
-----------------
In this overview we use the effective medium theory (EMT) calculator,
as it is very fast and hence useful for getting started.
We can attach a calculator to the previously created
:class:`~ase.Atoms` objects::
>>> from ase.calculators.emt import EMT
>>> slab.calc = EMT()
>>> molecule.calc = EMT()
and use it to calculate the total energies for the systems by using
the :meth:`~ase.Atoms.get_potential_energy` method from the
:class:`~ase.Atoms` class::
>>> e_slab = slab.get_potential_energy()
>>> e_N2 = molecule.get_potential_energy()
Structure relaxation
--------------------
Let's use the :class:`~ase.optimize.QuasiNewton` minimizer to optimize the
structure of the N2 molecule adsorbed on the Cu surface. First add the
adsorbate to the Cu slab, for example in the on-top position::
>>> h = 1.85
>>> add_adsorbate(slab, molecule, h, 'ontop')
In order to speed up the relaxation, let us keep the Cu atoms fixed in
the slab by using :class:`~ase.constraints.FixAtoms` from the
:mod:`~ase.constraints` module. Only the N2 molecule is then allowed
to relax to the equilibrium structure::
>>> from ase.constraints import FixAtoms
>>> constraint = FixAtoms(mask=[a.symbol != 'N' for a in slab])
>>> slab.set_constraint(constraint)
Now attach the :class:`~ase.optimize.QuasiNewton` minimizer to the
system and save the trajectory file. Run the minimizer with the
convergence criteria that the force on all atoms should be less than
some ``fmax``::
>>> from ase.optimize import QuasiNewton
>>> dyn = QuasiNewton(slab, trajectory='N2Cu.traj')
>>> dyn.run(fmax=0.05)
.. note::
The general documentation on
:ref:`structure optimizations <structure_optimizations>` contains
information about different algorithms, saving the state of an optimizer
and other functionality which should be considered when performing
expensive relaxations.
Input-output
------------
Writing the atomic positions to a file is done with the
:func:`~ase.io.write` function::
>>> from ase.io import write
>>> write('slab.xyz', slab)
This will write a file in the xyz-format. Possible formats are:
======== ===========================
format description
======== ===========================
``xyz`` Simple xyz-format
``cube`` Gaussian cube file
``pdb`` Protein data bank file
``traj`` ASE's own trajectory format
``py`` Python script
======== ===========================
Reading from a file is done like this::
>>> from ase.io import read
>>> slab_from_file = read('slab.xyz')
If the file contains several configurations, the default behavior of
the :func:`~ase.io.write` function is to return the last
configuration. However, we can load a specific configuration by
doing::
>>> read('slab.traj') # last configuration
>>> read('slab.traj', -1) # same as above
>>> read('slab.traj', 0) # first configuration
Visualization
-------------
The simplest way to visualize the atoms is the :func:`~ase.visualize.view`
function::
>>> from ase.visualize import view
>>> view(slab)
This will pop up a :mod:`ase.gui` window. Alternative viewers can be used
by specifying the optional keyword ``viewer=...`` - use one of
'ase.gui', 'gopenmol', 'vmd', or 'rasmol'. (Note that these alternative
viewers are not a part of ASE and will need to be installed by the user
separately.) The VMD viewer can take an optional ``data`` argument to
show 3D data::
>>> view(slab, viewer='VMD', data=array)
------------------
Molecular dynamics
------------------
Let us look at the nitrogen molecule as an example of molecular
dynamics with the :class:`VelocityVerlet <ase.md.verlet.VelocityVerlet>`
algorithm. We first create the :class:`VelocityVerlet
<ase.md.verlet.VelocityVerlet>` object giving it the molecule and the time
step for the integration of Newton's law. We then perform the dynamics
by calling its :meth:`~ase.md.verlet.VelocityVerlet.run` method and
giving it the number of steps to take:
>>> from ase.md.verlet import VelocityVerlet
>>> from ase import units
>>> dyn = VelocityVerlet(molecule, dt=1.0 * units.fs)
>>> for i in range(10):
... pot = molecule.get_potential_energy()
... kin = molecule.get_kinetic_energy()
... print('%2d: %.5f eV, %.5f eV, %.5f eV' % (i, pot + kin, pot, kin))
... dyn.run(steps=20)
|