1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
# fmt: off
from math import atan2, cos, log10, sin
import numpy as np
def hcp0001_root(symbol, root, size, a=None, c=None,
vacuum=None, orthogonal=False):
"""HCP(0001) surface maniupulated to have a x unit side length
of *root* before repeating. This also results in *root* number
of repetitions of the cell.
The first 20 valid roots for nonorthogonal are...
1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 25,
27, 28, 31, 36, 37, 39, 43, 48, 49"""
from ase.build import hcp0001
atoms = hcp0001(symbol=symbol, size=(1, 1, size[2]),
a=a, c=c, vacuum=vacuum, orthogonal=orthogonal)
atoms = root_surface(atoms, root)
atoms *= (size[0], size[1], 1)
return atoms
def fcc111_root(symbol, root, size, a=None,
vacuum=None, orthogonal=False):
"""FCC(111) surface maniupulated to have a x unit side length
of *root* before repeating. This also results in *root* number
of repetitions of the cell.
The first 20 valid roots for nonorthogonal are...
1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 25, 27,
28, 31, 36, 37, 39, 43, 48, 49"""
from ase.build import fcc111
atoms = fcc111(symbol=symbol, size=(1, 1, size[2]),
a=a, vacuum=vacuum, orthogonal=orthogonal)
atoms = root_surface(atoms, root)
atoms *= (size[0], size[1], 1)
return atoms
def bcc111_root(symbol, root, size, a=None,
vacuum=None, orthogonal=False):
"""BCC(111) surface maniupulated to have a x unit side length
of *root* before repeating. This also results in *root* number
of repetitions of the cell.
The first 20 valid roots for nonorthogonal are...
1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 25,
27, 28, 31, 36, 37, 39, 43, 48, 49"""
from ase.build import bcc111
atoms = bcc111(symbol=symbol, size=(1, 1, size[2]),
a=a, vacuum=vacuum, orthogonal=orthogonal)
atoms = root_surface(atoms, root)
atoms *= (size[0], size[1], 1)
return atoms
def point_in_cell_2d(point, cell, eps=1e-8):
"""This function takes a 2D slice of the cell in the XY plane and calculates
if a point should lie in it. This is used as a more accurate method of
ensuring we find all of the correct cell repetitions in the root surface
code. The Z axis is totally ignored but for most uses this should be fine.
"""
# Define area of a triangle
def tri_area(t1, t2, t3):
t1x, t1y = t1[0:2]
t2x, t2y = t2[0:2]
t3x, t3y = t3[0:2]
return abs(t1x * (t2y - t3y) + t2x *
(t3y - t1y) + t3x * (t1y - t2y)) / 2
# c0, c1, c2, c3 define a parallelogram
c0 = (0, 0)
c1 = cell[0, 0:2]
c2 = cell[1, 0:2]
c3 = c1 + c2
# Get area of parallelogram
cA = tri_area(c0, c1, c2) + tri_area(c1, c2, c3)
# Get area of triangles formed from adjacent vertices of parallelogram and
# point in question.
pA = tri_area(point, c0, c1) + tri_area(point, c1, c2) + \
tri_area(point, c2, c3) + tri_area(point, c3, c0)
# If combined area of triangles from point is larger than area of
# parallelogram, point is not inside parallelogram.
return pA <= cA + eps
def _root_cell_normalization(primitive_slab):
"""Returns the scaling factor for x axis and cell normalized by that
factor"""
xscale = np.linalg.norm(primitive_slab.cell[0, 0:2])
cell_vectors = primitive_slab.cell[0:2, 0:2] / xscale
return xscale, cell_vectors
def _root_surface_analysis(primitive_slab, root, eps=1e-8):
"""A tool to analyze a slab and look for valid roots that exist, up to
the given root. This is useful for generating all possible cells
without prior knowledge.
*primitive slab* is the primitive cell to analyze.
*root* is the desired root to find, and all below.
This is the internal function which gives extra data to root_surface.
"""
# Setup parameters for cell searching
logeps = int(-log10(eps))
_xscale, cell_vectors = _root_cell_normalization(primitive_slab)
# Allocate grid for cell search search
points = np.indices((root + 1, root + 1)).T.reshape(-1, 2)
# Find points corresponding to full cells
cell_points = [cell_vectors[0] * x + cell_vectors[1] * y for x, y in points]
# Find point close to the desired cell (floating point error possible)
roots = np.around(np.linalg.norm(cell_points, axis=1)**2, logeps)
valid_roots = np.nonzero(roots == root)[0]
if len(valid_roots) == 0:
raise ValueError(
"Invalid root {} for cell {}".format(
root, cell_vectors))
int_roots = np.array([int(this_root) for this_root in roots
if this_root.is_integer() and this_root <= root])
return cell_points, cell_points[np.nonzero(
roots == root)[0][0]], set(int_roots[1:])
def root_surface_analysis(primitive_slab, root, eps=1e-8):
"""A tool to analyze a slab and look for valid roots that exist, up to
the given root. This is useful for generating all possible cells
without prior knowledge.
*primitive slab* is the primitive cell to analyze.
*root* is the desired root to find, and all below."""
return _root_surface_analysis(
primitive_slab=primitive_slab, root=root, eps=eps)[2]
def root_surface(primitive_slab, root, eps=1e-8):
"""Creates a cell from a primitive cell that repeats along the x and y
axis in a way consisent with the primitive cell, that has been cut
to have a side length of *root*.
*primitive cell* should be a primitive 2d cell of your slab, repeated
as needed in the z direction.
*root* should be determined using an analysis tool such as the
root_surface_analysis function, or prior knowledge. It should always
be a whole number as it represents the number of repetitions."""
atoms = primitive_slab.copy()
xscale, cell_vectors = _root_cell_normalization(primitive_slab)
# Do root surface analysis
cell_points, root_point, _roots = _root_surface_analysis(
primitive_slab, root, eps=eps)
# Find new cell
root_angle = -atan2(root_point[1], root_point[0])
root_rotation = [[cos(root_angle), -sin(root_angle)],
[sin(root_angle), cos(root_angle)]]
root_scale = np.linalg.norm(root_point)
cell = np.array([np.dot(x, root_rotation) *
root_scale for x in cell_vectors])
# Find all cell centers within the cell
shift = cell_vectors.sum(axis=0) / 2
cell_points = [
point for point in cell_points if point_in_cell_2d(
point + shift, cell, eps=eps)]
# Setup new cell
atoms.rotate(root_angle, v="z")
atoms *= (root, root, 1)
atoms.cell[0:2, 0:2] = cell * xscale
atoms.center()
# Remove all extra atoms
del atoms[[atom.index for atom in atoms if not point_in_cell_2d(
atom.position, atoms.cell, eps=eps)]]
# Rotate cell back to original orientation
standard_rotation = [[cos(-root_angle), -sin(-root_angle), 0],
[sin(-root_angle), cos(-root_angle), 0],
[0, 0, 1]]
new_cell = np.array([np.dot(x, standard_rotation) for x in atoms.cell])
new_positions = np.array([np.dot(x, standard_rotation)
for x in atoms.positions])
atoms.cell = new_cell
atoms.positions = new_positions
return atoms
|