File: tools.py

package info (click to toggle)
python-ase 3.26.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,484 kB
  • sloc: python: 148,112; xml: 2,728; makefile: 110; javascript: 47
file content (531 lines) | stat: -rw-r--r-- 19,999 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
# fmt: off

import numpy as np

from ase.build.niggli import niggli_reduce_cell


def cut(atoms, a=(1, 0, 0), b=(0, 1, 0), c=None, clength=None,
        origo=(0, 0, 0), nlayers=None, extend=1.0, tolerance=0.01,
        maxatoms=None):
    """Cuts out a cell defined by *a*, *b*, *c* and *origo* from a
    sufficiently repeated copy of *atoms*.

    Typically, this function is used to create slabs of different
    sizes and orientations. The vectors *a*, *b* and *c* are in scaled
    coordinates and defines the returned cell and should normally be
    integer-valued in order to end up with a periodic
    structure. However, for systems with sub-translations, like fcc,
    integer multiples of 1/2 or 1/3 might also make sense for some
    directions (and will be treated correctly).

    Parameters:

    atoms: Atoms instance
        This should correspond to a repeatable unit cell.
    a: int | 3 floats
        The a-vector in scaled coordinates of the cell to cut out. If
        integer, the a-vector will be the scaled vector from *origo* to the
        atom with index *a*.
    b: int | 3 floats
        The b-vector in scaled coordinates of the cell to cut out. If
        integer, the b-vector will be the scaled vector from *origo* to the
        atom with index *b*.
    c: None | int | 3 floats
        The c-vector in scaled coordinates of the cell to cut out.
        if integer, the c-vector will be the scaled vector from *origo* to
        the atom with index *c*.
        If *None* it will be along cross(a, b) converted to real space
        and normalised with the cube root of the volume. Note that this
        in general is not perpendicular to a and b for non-cubic
        systems. For cubic systems however, this is redused to
        c = cross(a, b).
    clength: None | float
        If not None, the length of the c-vector will be fixed to
        *clength* Angstroms. Should not be used together with
        *nlayers*.
    origo: int | 3 floats
        Position of origo of the new cell in scaled coordinates. If
        integer, the position of the atom with index *origo* is used.
    nlayers: None | int
        If *nlayers* is not *None*, the returned cell will have
        *nlayers* atomic layers in the c-direction.
    extend: 1 or 3 floats
        The *extend* argument scales the effective cell in which atoms
        will be included. It must either be three floats or a single
        float scaling all 3 directions.  By setting to a value just
        above one, e.g. 1.05, it is possible to all the corner and
        edge atoms in the returned cell.  This will of cause make the
        returned cell non-repeatable, but is very useful for
        visualisation.
    tolerance: float
        Determines what is defined as a plane.  All atoms within
        *tolerance* Angstroms from a given plane will be considered to
        belong to that plane.
    maxatoms: None | int
        This option is used to auto-tune *tolerance* when *nlayers* is
        given for high zone axis systems.  For high zone axis one
        needs to reduce *tolerance* in order to distinguise the atomic
        planes, resulting in the more atoms will be added and
        eventually MemoryError.  A too small *tolerance*, on the other
        hand, might result in inproper splitting of atomic planes and
        that too few layers are returned.  If *maxatoms* is not None,
        *tolerance* will automatically be gradually reduced until
        *nlayers* atomic layers is obtained, when the number of atoms
        exceeds *maxatoms*.

    Example: Create an aluminium (111) slab with three layers.

    >>> import ase
    >>> from ase.spacegroup import crystal
    >>> from ase.build.tools import cut

    # First, a unit cell of Al
    >>> a = 4.05
    >>> aluminium = crystal('Al', [(0,0,0)], spacegroup=225,
    ...                     cellpar=[a, a, a, 90, 90, 90])

    # Then cut out the slab
    >>> al111 = cut(aluminium, (1,-1,0), (0,1,-1), nlayers=3)

    Example: Visualisation of the skutterudite unit cell

    >>> from ase.spacegroup import crystal
    >>> from ase.build.tools import cut

    # Again, create a skutterudite unit cell
    >>> a = 9.04
    >>> skutterudite = crystal(
    ...     ('Co', 'Sb'),
    ...     basis=[(0.25,0.25,0.25), (0.0, 0.335, 0.158)],
    ...     spacegroup=204,
    ...     cellpar=[a, a, a, 90, 90, 90])

    # Then use *origo* to put 'Co' at the corners and *extend* to
    # include all corner and edge atoms.
    >>> s = cut(skutterudite, origo=(0.25, 0.25, 0.25), extend=1.01)
    >>> ase.view(s)  # doctest:+SKIP
    """
    atoms = atoms.copy()
    cell = atoms.cell

    if isinstance(origo, int):
        origo = atoms.get_scaled_positions()[origo]
    origo = np.array(origo, dtype=float)

    scaled = (atoms.get_scaled_positions() - origo) % 1.0
    scaled %= 1.0   # needed to ensure that all numbers are *less* than one
    atoms.set_scaled_positions(scaled)

    if isinstance(a, int):
        a = scaled[a] - origo
    if isinstance(b, int):
        b = scaled[b] - origo
    if isinstance(c, int):
        c = scaled[c] - origo

    a = np.array(a, dtype=float)
    b = np.array(b, dtype=float)
    if c is None:
        metric = np.dot(cell, cell.T)
        vol = np.sqrt(np.linalg.det(metric))
        h = np.cross(a, b)
        H = np.linalg.solve(metric.T, h.T)
        c = vol * H / vol**(1. / 3.)
    c = np.array(c, dtype=float)

    if nlayers:
        # Recursive increase the length of c until we have at least
        # *nlayers* atomic layers parallel to the a-b plane
        while True:
            at = cut(atoms, a, b, c, origo=origo, extend=extend,
                     tolerance=tolerance)
            scaled = at.get_scaled_positions()
            d = scaled[:, 2]
            keys = np.argsort(d)
            ikeys = np.argsort(keys)
            tol = tolerance
            while True:
                mask = np.concatenate(([True], np.diff(d[keys]) > tol))
                tags = np.cumsum(mask)[ikeys] - 1
                levels = d[keys][mask]
                if (maxatoms is None or len(at) < maxatoms or
                        len(levels) > nlayers):
                    break
                tol *= 0.9
            if len(levels) > nlayers:
                break
            c *= 2

        at.cell[2] *= levels[nlayers]
        return at[tags < nlayers]

    newcell = np.dot(np.array([a, b, c]), cell)
    if nlayers is None and clength is not None:
        newcell[2, :] *= clength / np.linalg.norm(newcell[2])

    # Create a new atoms object, repeated and translated such that
    # it completely covers the new cell
    scorners_newcell = np.array([[0., 0., 0.], [0., 0., 1.],
                                 [0., 1., 0.], [0., 1., 1.],
                                 [1., 0., 0.], [1., 0., 1.],
                                 [1., 1., 0.], [1., 1., 1.]])
    corners = np.dot(scorners_newcell, newcell * extend)
    scorners = np.linalg.solve(cell.T, corners.T).T
    rep = np.ceil(np.ptp(scorners, axis=0)).astype('int') + 1
    trans = np.dot(np.floor(scorners.min(axis=0)), cell)
    atoms = atoms.repeat(rep)
    atoms.translate(trans)
    atoms.set_cell(newcell)

    # Mask out atoms outside new cell
    stol = 0.1 * tolerance  # scaled tolerance, XXX
    maskcell = atoms.cell * extend
    sp = np.linalg.solve(maskcell.T, (atoms.positions).T).T
    mask = np.all(np.logical_and(-stol <= sp, sp < 1 - stol), axis=1)
    atoms = atoms[mask]
    return atoms


class IncompatibleCellError(ValueError):
    """Exception raised if stacking fails due to incompatible cells
    between *atoms1* and *atoms2*."""


def stack(atoms1, atoms2, axis=2, cell=None, fix=0.5,
          maxstrain=0.5, distance=None, reorder=False,
          output_strained=False):
    """Return a new Atoms instance with *atoms2* stacked on top of
    *atoms1* along the given axis. Periodicity in all directions is
    ensured.

    The size of the final cell is determined by *cell*, except
    that the length alongh *axis* will be the sum of
    *atoms1.cell[axis]* and *atoms2.cell[axis]*. If *cell* is None,
    it will be interpolated between *atoms1* and *atoms2*, where
    *fix* determines their relative weight. Hence, if *fix* equals
    zero, the final cell will be determined purely from *atoms1* and
    if *fix* equals one, it will be determined purely from
    *atoms2*.

    An ase.geometry.IncompatibleCellError exception is raised if the
    cells of *atoms1* and *atoms2* are incompatible, e.g. if the far
    corner of the unit cell of either *atoms1* or *atoms2* is
    displaced more than *maxstrain*. Setting *maxstrain* to None
    disables this check.

    If *distance* is not None, the size of the final cell, along the
    direction perpendicular to the interface, will be adjusted such
    that the distance between the closest atoms in *atoms1* and
    *atoms2* will be equal to *distance*. This option uses
    scipy.optimize.fmin() and hence require scipy to be installed.

    If *reorder* is True, then the atoms will be reordered such that
    all atoms with the same symbol will follow sequencially after each
    other, eg: 'Al2MnAl10Fe' -> 'Al12FeMn'.

    If *output_strained* is True, then the strained versions of
    *atoms1* and *atoms2* are returned in addition to the stacked
    structure.

    Example: Create an Ag(110)-Si(110) interface with three atomic layers
    on each side.

    >>> import ase
    >>> from ase.spacegroup import crystal
    >>> from ase.build.tools import cut, stack
    >>>
    >>> a_ag = 4.09
    >>> ag = crystal(['Ag'], basis=[(0,0,0)], spacegroup=225,
    ...              cellpar=[a_ag, a_ag, a_ag, 90., 90., 90.])
    >>> ag110 = cut(ag, (0, 0, 3), (-1.5, 1.5, 0), nlayers=3)
    >>>
    >>> a_si = 5.43
    >>> si = crystal(['Si'], basis=[(0,0,0)], spacegroup=227,
    ...              cellpar=[a_si, a_si, a_si, 90., 90., 90.])
    >>> si110 = cut(si, (0, 0, 2), (-1, 1, 0), nlayers=3)
    >>>
    >>> interface = stack(ag110, si110, maxstrain=1)
    >>> ase.view(interface)  # doctest: +SKIP
    >>>
    # Once more, this time adjusted such that the distance between
    # the closest Ag and Si atoms will be 2.3 Angstrom (requires scipy).
    >>> interface2 = stack(ag110, si110,
    ...                    maxstrain=1, distance=2.3)   # doctest:+ELLIPSIS
    Optimization terminated successfully.
        ...
    >>> ase.view(interface2)  # doctest: +SKIP
    """
    atoms1 = atoms1.copy()
    atoms2 = atoms2.copy()

    for atoms in [atoms1, atoms2]:
        if not atoms.cell[axis].any():
            atoms.center(vacuum=0.0, axis=axis)

    if (np.sign(np.linalg.det(atoms1.cell)) !=
            np.sign(np.linalg.det(atoms2.cell))):
        raise IncompatibleCellError('Cells of *atoms1* and *atoms2* must have '
                                    'same handedness.')

    c1 = np.linalg.norm(atoms1.cell[axis])
    c2 = np.linalg.norm(atoms2.cell[axis])
    if cell is None:
        cell1 = atoms1.cell.copy()
        cell2 = atoms2.cell.copy()
        cell1[axis] /= c1
        cell2[axis] /= c2
        cell = cell1 + fix * (cell2 - cell1)
    cell[axis] /= np.linalg.norm(cell[axis])
    cell1 = cell.copy()
    cell2 = cell.copy()
    cell1[axis] *= c1
    cell2[axis] *= c2

    if maxstrain:
        strain1 = np.sqrt(((cell1 - atoms1.cell).sum(axis=0)**2).sum())
        strain2 = np.sqrt(((cell2 - atoms2.cell).sum(axis=0)**2).sum())
        if strain1 > maxstrain or strain2 > maxstrain:
            raise IncompatibleCellError(
                '*maxstrain* exceeded. *atoms1* strained %f and '
                '*atoms2* strained %f.' % (strain1, strain2))

    atoms1.set_cell(cell1, scale_atoms=True)
    atoms2.set_cell(cell2, scale_atoms=True)
    if output_strained:
        atoms1_strained = atoms1.copy()
        atoms2_strained = atoms2.copy()

    if distance is not None:
        from scipy.optimize import fmin

        def mindist(pos1, pos2):
            n1 = len(pos1)
            n2 = len(pos2)
            idx1 = np.arange(n1).repeat(n2)
            idx2 = np.tile(np.arange(n2), n1)
            return np.sqrt(((pos1[idx1] - pos2[idx2])**2).sum(axis=1).min())

        def func(x):
            t1, t2, h1, h2 = x[0:3], x[3:6], x[6], x[7]
            pos1 = atoms1.positions + t1
            pos2 = atoms2.positions + t2
            d1 = mindist(pos1, pos2 + (h1 + 1.0) * atoms1.cell[axis])
            d2 = mindist(pos2, pos1 + (h2 + 1.0) * atoms2.cell[axis])
            return (d1 - distance)**2 + (d2 - distance)**2

        atoms1.center()
        atoms2.center()
        x0 = np.zeros((8,))
        x = fmin(func, x0)
        t1, t2, h1, h2 = x[0:3], x[3:6], x[6], x[7]
        atoms1.translate(t1)
        atoms2.translate(t2)
        atoms1.cell[axis] *= 1.0 + h1
        atoms2.cell[axis] *= 1.0 + h2

    atoms2.translate(atoms1.cell[axis])
    atoms1.cell[axis] += atoms2.cell[axis]
    atoms1.extend(atoms2)

    if reorder:
        atoms1 = sort(atoms1)

    if output_strained:
        return atoms1, atoms1_strained, atoms2_strained
    else:
        return atoms1


def rotation_matrix(a1, a2, b1, b2):
    """Returns a rotation matrix that rotates the vectors *a1* in the
    direction of *a2* and *b1* in the direction of *b2*.

    In the case that the angle between *a2* and *b2* is not the same
    as between *a1* and *b1*, a proper rotation matrix will anyway be
    constructed by first rotate *b2* in the *b1*, *b2* plane.
    """
    a1 = np.asarray(a1, dtype=float) / np.linalg.norm(a1)
    b1 = np.asarray(b1, dtype=float) / np.linalg.norm(b1)
    c1 = np.cross(a1, b1)
    c1 /= np.linalg.norm(c1)      # clean out rounding errors...

    a2 = np.asarray(a2, dtype=float) / np.linalg.norm(a2)
    b2 = np.asarray(b2, dtype=float) / np.linalg.norm(b2)
    c2 = np.cross(a2, b2)
    c2 /= np.linalg.norm(c2)      # clean out rounding errors...

    # Calculate rotated *b2*
    theta = np.arccos(np.dot(a2, b2)) - np.arccos(np.dot(a1, b1))
    b3 = np.sin(theta) * a2 + np.cos(theta) * b2
    b3 /= np.linalg.norm(b3)      # clean out rounding errors...

    A1 = np.array([a1, b1, c1])
    A2 = np.array([a2, b3, c2])
    R = np.linalg.solve(A1, A2).T
    return R


def rotate(atoms, a1, a2, b1, b2, rotate_cell=True, center=(0, 0, 0)):
    """Rotate *atoms*, such that *a1* will be rotated in the direction
    of *a2* and *b1* in the direction of *b2*.  The point at *center*
    is fixed.  Use *center='COM'* to fix the center of mass.  If
    *rotate_cell* is true, the cell will be rotated together with the
    atoms.

    Note that the 000-corner of the cell is by definition fixed at
    origo.  Hence, setting *center* to something other than (0, 0, 0)
    will rotate the atoms out of the cell, even if *rotate_cell* is
    True.
    """
    if isinstance(center, str) and center.lower() == 'com':
        center = atoms.get_center_of_mass()

    R = rotation_matrix(a1, a2, b1, b2)
    atoms.positions[:] = np.dot(atoms.positions - center, R.T) + center

    if rotate_cell:
        atoms.cell[:] = np.dot(atoms.cell, R.T)


def minimize_tilt_ij(atoms, modified=1, fixed=0, fold_atoms=True):
    """Minimize the tilt angle for two given axes.

    The problem is underdetermined. Therefore one can choose one axis
    that is kept fixed.
    """

    orgcell_cc = atoms.get_cell()
    pbc_c = atoms.get_pbc()
    i = fixed
    j = modified
    if not (pbc_c[i] and pbc_c[j]):
        raise RuntimeError('Axes have to be periodic')

    prod_cc = np.dot(orgcell_cc, orgcell_cc.T)
    cell_cc = 1. * orgcell_cc
    nji = np.floor(- prod_cc[i, j] / prod_cc[i, i] + 0.5)
    cell_cc[j] = orgcell_cc[j] + nji * cell_cc[i]

    # sanity check
    def volume(cell):
        return np.abs(np.dot(cell[2], np.cross(cell[0], cell[1])))
    V = volume(cell_cc)
    assert abs(volume(orgcell_cc) - V) / V < 1.e-10

    atoms.set_cell(cell_cc)

    if fold_atoms:
        atoms.wrap()


def minimize_tilt(atoms, order=range(3), fold_atoms=True):
    """Minimize the tilt angles of the unit cell."""
    pbc_c = atoms.get_pbc()

    for i1, c1 in enumerate(order):
        for c2 in order[i1 + 1:]:
            if pbc_c[c1] and pbc_c[c2]:
                minimize_tilt_ij(atoms, c1, c2, fold_atoms)


def update_cell_and_positions(atoms, new_cell, op):
    """Helper method for transforming cell and positions of atoms object."""
    scpos = np.linalg.solve(op, atoms.get_scaled_positions().T).T

    # We do this twice because -1e-20 % 1 == 1:
    scpos[:, atoms.pbc] %= 1.0
    scpos[:, atoms.pbc] %= 1.0

    atoms.set_cell(new_cell)
    atoms.set_scaled_positions(scpos)


def niggli_reduce(atoms):
    """Convert the supplied atoms object's unit cell into its
    maximally-reduced Niggli unit cell. Even if the unit cell is already
    maximally reduced, it will be converted into its unique Niggli unit cell.
    This will also wrap all atoms into the new unit cell.

    References:

    Niggli, P. "Krystallographische und strukturtheoretische Grundbegriffe.
    Handbuch der Experimentalphysik", 1928, Vol. 7, Part 1, 108-176.

    Krivy, I. and Gruber, B., "A Unified Algorithm for Determining the
    Reduced (Niggli) Cell", Acta Cryst. 1976, A32, 297-298.

    Grosse-Kunstleve, R.W.; Sauter, N. K.; and Adams, P. D. "Numerically
    stable algorithms for the computation of reduced unit cells", Acta Cryst.
    2004, A60, 1-6.
    """
    from ase.geometry.geometry import permute_axes

    # Make sure non-periodic cell vectors are orthogonal
    non_periodic_cv = atoms.cell[~atoms.pbc]
    periodic_cv = atoms.cell[atoms.pbc]
    if not np.isclose(np.dot(non_periodic_cv, periodic_cv.T), 0).all():
        raise ValueError('Non-orthogonal cell along non-periodic dimensions')

    input_atoms = atoms

    # Permute axes, such that the non-periodic are along the last dimensions,
    # since niggli_reduce_cell will change the order of axes.
    permutation = np.argsort(~atoms.pbc)
    ipermutation = np.empty_like(permutation)
    ipermutation[permutation] = np.arange(len(permutation))
    atoms = permute_axes(atoms, permutation)

    # Perform the Niggli reduction on the cell
    nonpbc = ~atoms.pbc
    uncompleted_cell = atoms.cell.uncomplete(atoms.pbc)
    new_cell, op = niggli_reduce_cell(uncompleted_cell)
    new_cell[nonpbc] = atoms.cell[nonpbc]
    update_cell_and_positions(atoms, new_cell, op)

    # Undo the prior permutation.
    atoms = permute_axes(atoms, ipermutation)
    input_atoms.cell[:] = atoms.cell
    input_atoms.positions[:] = atoms.positions


def reduce_lattice(atoms, eps=2e-4):
    """Reduce atoms object to canonical lattice.

    This changes the cell and positions such that the atoms object has
    the canonical form used for defining band paths but is otherwise
    physically equivalent.  The eps parameter is used as a tolerance
    for determining the cell's Bravais lattice."""
    from ase.lattice import identify_lattice
    niggli_reduce(atoms)
    lat, op = identify_lattice(atoms.cell, eps=eps)
    update_cell_and_positions(atoms, lat.tocell(), np.linalg.inv(op))


def sort(atoms, tags=None):
    """Return a new Atoms object with sorted atomic order. The default
    is to order according to chemical symbols, but if *tags* is not
    None, it will be used instead. A stable sorting algorithm is used.

    Example:

    >>> from ase.build import bulk
    >>> from ase.build.tools import sort
    >>> # Two unit cells of NaCl:
    >>> a = 5.64
    >>> nacl = bulk('NaCl', 'rocksalt', a=a) * (2, 1, 1)
    >>> nacl.get_chemical_symbols()
    ['Na', 'Cl', 'Na', 'Cl']
    >>> nacl_sorted = sort(nacl)
    >>> nacl_sorted.get_chemical_symbols()
    ['Cl', 'Cl', 'Na', 'Na']
    >>> np.all(nacl_sorted.cell == nacl.cell)
    True
    """
    if tags is None:
        tags = atoms.get_chemical_symbols()
    else:
        tags = list(tags)
    deco = sorted([(tag, i) for i, tag in enumerate(tags)])
    indices = [i for tag, i in deco]
    return atoms[indices]