1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
# fmt: off
import numpy as np
from ase.build.niggli import niggli_reduce_cell
def cut(atoms, a=(1, 0, 0), b=(0, 1, 0), c=None, clength=None,
origo=(0, 0, 0), nlayers=None, extend=1.0, tolerance=0.01,
maxatoms=None):
"""Cuts out a cell defined by *a*, *b*, *c* and *origo* from a
sufficiently repeated copy of *atoms*.
Typically, this function is used to create slabs of different
sizes and orientations. The vectors *a*, *b* and *c* are in scaled
coordinates and defines the returned cell and should normally be
integer-valued in order to end up with a periodic
structure. However, for systems with sub-translations, like fcc,
integer multiples of 1/2 or 1/3 might also make sense for some
directions (and will be treated correctly).
Parameters:
atoms: Atoms instance
This should correspond to a repeatable unit cell.
a: int | 3 floats
The a-vector in scaled coordinates of the cell to cut out. If
integer, the a-vector will be the scaled vector from *origo* to the
atom with index *a*.
b: int | 3 floats
The b-vector in scaled coordinates of the cell to cut out. If
integer, the b-vector will be the scaled vector from *origo* to the
atom with index *b*.
c: None | int | 3 floats
The c-vector in scaled coordinates of the cell to cut out.
if integer, the c-vector will be the scaled vector from *origo* to
the atom with index *c*.
If *None* it will be along cross(a, b) converted to real space
and normalised with the cube root of the volume. Note that this
in general is not perpendicular to a and b for non-cubic
systems. For cubic systems however, this is redused to
c = cross(a, b).
clength: None | float
If not None, the length of the c-vector will be fixed to
*clength* Angstroms. Should not be used together with
*nlayers*.
origo: int | 3 floats
Position of origo of the new cell in scaled coordinates. If
integer, the position of the atom with index *origo* is used.
nlayers: None | int
If *nlayers* is not *None*, the returned cell will have
*nlayers* atomic layers in the c-direction.
extend: 1 or 3 floats
The *extend* argument scales the effective cell in which atoms
will be included. It must either be three floats or a single
float scaling all 3 directions. By setting to a value just
above one, e.g. 1.05, it is possible to all the corner and
edge atoms in the returned cell. This will of cause make the
returned cell non-repeatable, but is very useful for
visualisation.
tolerance: float
Determines what is defined as a plane. All atoms within
*tolerance* Angstroms from a given plane will be considered to
belong to that plane.
maxatoms: None | int
This option is used to auto-tune *tolerance* when *nlayers* is
given for high zone axis systems. For high zone axis one
needs to reduce *tolerance* in order to distinguise the atomic
planes, resulting in the more atoms will be added and
eventually MemoryError. A too small *tolerance*, on the other
hand, might result in inproper splitting of atomic planes and
that too few layers are returned. If *maxatoms* is not None,
*tolerance* will automatically be gradually reduced until
*nlayers* atomic layers is obtained, when the number of atoms
exceeds *maxatoms*.
Example: Create an aluminium (111) slab with three layers.
>>> import ase
>>> from ase.spacegroup import crystal
>>> from ase.build.tools import cut
# First, a unit cell of Al
>>> a = 4.05
>>> aluminium = crystal('Al', [(0,0,0)], spacegroup=225,
... cellpar=[a, a, a, 90, 90, 90])
# Then cut out the slab
>>> al111 = cut(aluminium, (1,-1,0), (0,1,-1), nlayers=3)
Example: Visualisation of the skutterudite unit cell
>>> from ase.spacegroup import crystal
>>> from ase.build.tools import cut
# Again, create a skutterudite unit cell
>>> a = 9.04
>>> skutterudite = crystal(
... ('Co', 'Sb'),
... basis=[(0.25,0.25,0.25), (0.0, 0.335, 0.158)],
... spacegroup=204,
... cellpar=[a, a, a, 90, 90, 90])
# Then use *origo* to put 'Co' at the corners and *extend* to
# include all corner and edge atoms.
>>> s = cut(skutterudite, origo=(0.25, 0.25, 0.25), extend=1.01)
>>> ase.view(s) # doctest:+SKIP
"""
atoms = atoms.copy()
cell = atoms.cell
if isinstance(origo, int):
origo = atoms.get_scaled_positions()[origo]
origo = np.array(origo, dtype=float)
scaled = (atoms.get_scaled_positions() - origo) % 1.0
scaled %= 1.0 # needed to ensure that all numbers are *less* than one
atoms.set_scaled_positions(scaled)
if isinstance(a, int):
a = scaled[a] - origo
if isinstance(b, int):
b = scaled[b] - origo
if isinstance(c, int):
c = scaled[c] - origo
a = np.array(a, dtype=float)
b = np.array(b, dtype=float)
if c is None:
metric = np.dot(cell, cell.T)
vol = np.sqrt(np.linalg.det(metric))
h = np.cross(a, b)
H = np.linalg.solve(metric.T, h.T)
c = vol * H / vol**(1. / 3.)
c = np.array(c, dtype=float)
if nlayers:
# Recursive increase the length of c until we have at least
# *nlayers* atomic layers parallel to the a-b plane
while True:
at = cut(atoms, a, b, c, origo=origo, extend=extend,
tolerance=tolerance)
scaled = at.get_scaled_positions()
d = scaled[:, 2]
keys = np.argsort(d)
ikeys = np.argsort(keys)
tol = tolerance
while True:
mask = np.concatenate(([True], np.diff(d[keys]) > tol))
tags = np.cumsum(mask)[ikeys] - 1
levels = d[keys][mask]
if (maxatoms is None or len(at) < maxatoms or
len(levels) > nlayers):
break
tol *= 0.9
if len(levels) > nlayers:
break
c *= 2
at.cell[2] *= levels[nlayers]
return at[tags < nlayers]
newcell = np.dot(np.array([a, b, c]), cell)
if nlayers is None and clength is not None:
newcell[2, :] *= clength / np.linalg.norm(newcell[2])
# Create a new atoms object, repeated and translated such that
# it completely covers the new cell
scorners_newcell = np.array([[0., 0., 0.], [0., 0., 1.],
[0., 1., 0.], [0., 1., 1.],
[1., 0., 0.], [1., 0., 1.],
[1., 1., 0.], [1., 1., 1.]])
corners = np.dot(scorners_newcell, newcell * extend)
scorners = np.linalg.solve(cell.T, corners.T).T
rep = np.ceil(np.ptp(scorners, axis=0)).astype('int') + 1
trans = np.dot(np.floor(scorners.min(axis=0)), cell)
atoms = atoms.repeat(rep)
atoms.translate(trans)
atoms.set_cell(newcell)
# Mask out atoms outside new cell
stol = 0.1 * tolerance # scaled tolerance, XXX
maskcell = atoms.cell * extend
sp = np.linalg.solve(maskcell.T, (atoms.positions).T).T
mask = np.all(np.logical_and(-stol <= sp, sp < 1 - stol), axis=1)
atoms = atoms[mask]
return atoms
class IncompatibleCellError(ValueError):
"""Exception raised if stacking fails due to incompatible cells
between *atoms1* and *atoms2*."""
def stack(atoms1, atoms2, axis=2, cell=None, fix=0.5,
maxstrain=0.5, distance=None, reorder=False,
output_strained=False):
"""Return a new Atoms instance with *atoms2* stacked on top of
*atoms1* along the given axis. Periodicity in all directions is
ensured.
The size of the final cell is determined by *cell*, except
that the length alongh *axis* will be the sum of
*atoms1.cell[axis]* and *atoms2.cell[axis]*. If *cell* is None,
it will be interpolated between *atoms1* and *atoms2*, where
*fix* determines their relative weight. Hence, if *fix* equals
zero, the final cell will be determined purely from *atoms1* and
if *fix* equals one, it will be determined purely from
*atoms2*.
An ase.geometry.IncompatibleCellError exception is raised if the
cells of *atoms1* and *atoms2* are incompatible, e.g. if the far
corner of the unit cell of either *atoms1* or *atoms2* is
displaced more than *maxstrain*. Setting *maxstrain* to None
disables this check.
If *distance* is not None, the size of the final cell, along the
direction perpendicular to the interface, will be adjusted such
that the distance between the closest atoms in *atoms1* and
*atoms2* will be equal to *distance*. This option uses
scipy.optimize.fmin() and hence require scipy to be installed.
If *reorder* is True, then the atoms will be reordered such that
all atoms with the same symbol will follow sequencially after each
other, eg: 'Al2MnAl10Fe' -> 'Al12FeMn'.
If *output_strained* is True, then the strained versions of
*atoms1* and *atoms2* are returned in addition to the stacked
structure.
Example: Create an Ag(110)-Si(110) interface with three atomic layers
on each side.
>>> import ase
>>> from ase.spacegroup import crystal
>>> from ase.build.tools import cut, stack
>>>
>>> a_ag = 4.09
>>> ag = crystal(['Ag'], basis=[(0,0,0)], spacegroup=225,
... cellpar=[a_ag, a_ag, a_ag, 90., 90., 90.])
>>> ag110 = cut(ag, (0, 0, 3), (-1.5, 1.5, 0), nlayers=3)
>>>
>>> a_si = 5.43
>>> si = crystal(['Si'], basis=[(0,0,0)], spacegroup=227,
... cellpar=[a_si, a_si, a_si, 90., 90., 90.])
>>> si110 = cut(si, (0, 0, 2), (-1, 1, 0), nlayers=3)
>>>
>>> interface = stack(ag110, si110, maxstrain=1)
>>> ase.view(interface) # doctest: +SKIP
>>>
# Once more, this time adjusted such that the distance between
# the closest Ag and Si atoms will be 2.3 Angstrom (requires scipy).
>>> interface2 = stack(ag110, si110,
... maxstrain=1, distance=2.3) # doctest:+ELLIPSIS
Optimization terminated successfully.
...
>>> ase.view(interface2) # doctest: +SKIP
"""
atoms1 = atoms1.copy()
atoms2 = atoms2.copy()
for atoms in [atoms1, atoms2]:
if not atoms.cell[axis].any():
atoms.center(vacuum=0.0, axis=axis)
if (np.sign(np.linalg.det(atoms1.cell)) !=
np.sign(np.linalg.det(atoms2.cell))):
raise IncompatibleCellError('Cells of *atoms1* and *atoms2* must have '
'same handedness.')
c1 = np.linalg.norm(atoms1.cell[axis])
c2 = np.linalg.norm(atoms2.cell[axis])
if cell is None:
cell1 = atoms1.cell.copy()
cell2 = atoms2.cell.copy()
cell1[axis] /= c1
cell2[axis] /= c2
cell = cell1 + fix * (cell2 - cell1)
cell[axis] /= np.linalg.norm(cell[axis])
cell1 = cell.copy()
cell2 = cell.copy()
cell1[axis] *= c1
cell2[axis] *= c2
if maxstrain:
strain1 = np.sqrt(((cell1 - atoms1.cell).sum(axis=0)**2).sum())
strain2 = np.sqrt(((cell2 - atoms2.cell).sum(axis=0)**2).sum())
if strain1 > maxstrain or strain2 > maxstrain:
raise IncompatibleCellError(
'*maxstrain* exceeded. *atoms1* strained %f and '
'*atoms2* strained %f.' % (strain1, strain2))
atoms1.set_cell(cell1, scale_atoms=True)
atoms2.set_cell(cell2, scale_atoms=True)
if output_strained:
atoms1_strained = atoms1.copy()
atoms2_strained = atoms2.copy()
if distance is not None:
from scipy.optimize import fmin
def mindist(pos1, pos2):
n1 = len(pos1)
n2 = len(pos2)
idx1 = np.arange(n1).repeat(n2)
idx2 = np.tile(np.arange(n2), n1)
return np.sqrt(((pos1[idx1] - pos2[idx2])**2).sum(axis=1).min())
def func(x):
t1, t2, h1, h2 = x[0:3], x[3:6], x[6], x[7]
pos1 = atoms1.positions + t1
pos2 = atoms2.positions + t2
d1 = mindist(pos1, pos2 + (h1 + 1.0) * atoms1.cell[axis])
d2 = mindist(pos2, pos1 + (h2 + 1.0) * atoms2.cell[axis])
return (d1 - distance)**2 + (d2 - distance)**2
atoms1.center()
atoms2.center()
x0 = np.zeros((8,))
x = fmin(func, x0)
t1, t2, h1, h2 = x[0:3], x[3:6], x[6], x[7]
atoms1.translate(t1)
atoms2.translate(t2)
atoms1.cell[axis] *= 1.0 + h1
atoms2.cell[axis] *= 1.0 + h2
atoms2.translate(atoms1.cell[axis])
atoms1.cell[axis] += atoms2.cell[axis]
atoms1.extend(atoms2)
if reorder:
atoms1 = sort(atoms1)
if output_strained:
return atoms1, atoms1_strained, atoms2_strained
else:
return atoms1
def rotation_matrix(a1, a2, b1, b2):
"""Returns a rotation matrix that rotates the vectors *a1* in the
direction of *a2* and *b1* in the direction of *b2*.
In the case that the angle between *a2* and *b2* is not the same
as between *a1* and *b1*, a proper rotation matrix will anyway be
constructed by first rotate *b2* in the *b1*, *b2* plane.
"""
a1 = np.asarray(a1, dtype=float) / np.linalg.norm(a1)
b1 = np.asarray(b1, dtype=float) / np.linalg.norm(b1)
c1 = np.cross(a1, b1)
c1 /= np.linalg.norm(c1) # clean out rounding errors...
a2 = np.asarray(a2, dtype=float) / np.linalg.norm(a2)
b2 = np.asarray(b2, dtype=float) / np.linalg.norm(b2)
c2 = np.cross(a2, b2)
c2 /= np.linalg.norm(c2) # clean out rounding errors...
# Calculate rotated *b2*
theta = np.arccos(np.dot(a2, b2)) - np.arccos(np.dot(a1, b1))
b3 = np.sin(theta) * a2 + np.cos(theta) * b2
b3 /= np.linalg.norm(b3) # clean out rounding errors...
A1 = np.array([a1, b1, c1])
A2 = np.array([a2, b3, c2])
R = np.linalg.solve(A1, A2).T
return R
def rotate(atoms, a1, a2, b1, b2, rotate_cell=True, center=(0, 0, 0)):
"""Rotate *atoms*, such that *a1* will be rotated in the direction
of *a2* and *b1* in the direction of *b2*. The point at *center*
is fixed. Use *center='COM'* to fix the center of mass. If
*rotate_cell* is true, the cell will be rotated together with the
atoms.
Note that the 000-corner of the cell is by definition fixed at
origo. Hence, setting *center* to something other than (0, 0, 0)
will rotate the atoms out of the cell, even if *rotate_cell* is
True.
"""
if isinstance(center, str) and center.lower() == 'com':
center = atoms.get_center_of_mass()
R = rotation_matrix(a1, a2, b1, b2)
atoms.positions[:] = np.dot(atoms.positions - center, R.T) + center
if rotate_cell:
atoms.cell[:] = np.dot(atoms.cell, R.T)
def minimize_tilt_ij(atoms, modified=1, fixed=0, fold_atoms=True):
"""Minimize the tilt angle for two given axes.
The problem is underdetermined. Therefore one can choose one axis
that is kept fixed.
"""
orgcell_cc = atoms.get_cell()
pbc_c = atoms.get_pbc()
i = fixed
j = modified
if not (pbc_c[i] and pbc_c[j]):
raise RuntimeError('Axes have to be periodic')
prod_cc = np.dot(orgcell_cc, orgcell_cc.T)
cell_cc = 1. * orgcell_cc
nji = np.floor(- prod_cc[i, j] / prod_cc[i, i] + 0.5)
cell_cc[j] = orgcell_cc[j] + nji * cell_cc[i]
# sanity check
def volume(cell):
return np.abs(np.dot(cell[2], np.cross(cell[0], cell[1])))
V = volume(cell_cc)
assert abs(volume(orgcell_cc) - V) / V < 1.e-10
atoms.set_cell(cell_cc)
if fold_atoms:
atoms.wrap()
def minimize_tilt(atoms, order=range(3), fold_atoms=True):
"""Minimize the tilt angles of the unit cell."""
pbc_c = atoms.get_pbc()
for i1, c1 in enumerate(order):
for c2 in order[i1 + 1:]:
if pbc_c[c1] and pbc_c[c2]:
minimize_tilt_ij(atoms, c1, c2, fold_atoms)
def update_cell_and_positions(atoms, new_cell, op):
"""Helper method for transforming cell and positions of atoms object."""
scpos = np.linalg.solve(op, atoms.get_scaled_positions().T).T
# We do this twice because -1e-20 % 1 == 1:
scpos[:, atoms.pbc] %= 1.0
scpos[:, atoms.pbc] %= 1.0
atoms.set_cell(new_cell)
atoms.set_scaled_positions(scpos)
def niggli_reduce(atoms):
"""Convert the supplied atoms object's unit cell into its
maximally-reduced Niggli unit cell. Even if the unit cell is already
maximally reduced, it will be converted into its unique Niggli unit cell.
This will also wrap all atoms into the new unit cell.
References:
Niggli, P. "Krystallographische und strukturtheoretische Grundbegriffe.
Handbuch der Experimentalphysik", 1928, Vol. 7, Part 1, 108-176.
Krivy, I. and Gruber, B., "A Unified Algorithm for Determining the
Reduced (Niggli) Cell", Acta Cryst. 1976, A32, 297-298.
Grosse-Kunstleve, R.W.; Sauter, N. K.; and Adams, P. D. "Numerically
stable algorithms for the computation of reduced unit cells", Acta Cryst.
2004, A60, 1-6.
"""
from ase.geometry.geometry import permute_axes
# Make sure non-periodic cell vectors are orthogonal
non_periodic_cv = atoms.cell[~atoms.pbc]
periodic_cv = atoms.cell[atoms.pbc]
if not np.isclose(np.dot(non_periodic_cv, periodic_cv.T), 0).all():
raise ValueError('Non-orthogonal cell along non-periodic dimensions')
input_atoms = atoms
# Permute axes, such that the non-periodic are along the last dimensions,
# since niggli_reduce_cell will change the order of axes.
permutation = np.argsort(~atoms.pbc)
ipermutation = np.empty_like(permutation)
ipermutation[permutation] = np.arange(len(permutation))
atoms = permute_axes(atoms, permutation)
# Perform the Niggli reduction on the cell
nonpbc = ~atoms.pbc
uncompleted_cell = atoms.cell.uncomplete(atoms.pbc)
new_cell, op = niggli_reduce_cell(uncompleted_cell)
new_cell[nonpbc] = atoms.cell[nonpbc]
update_cell_and_positions(atoms, new_cell, op)
# Undo the prior permutation.
atoms = permute_axes(atoms, ipermutation)
input_atoms.cell[:] = atoms.cell
input_atoms.positions[:] = atoms.positions
def reduce_lattice(atoms, eps=2e-4):
"""Reduce atoms object to canonical lattice.
This changes the cell and positions such that the atoms object has
the canonical form used for defining band paths but is otherwise
physically equivalent. The eps parameter is used as a tolerance
for determining the cell's Bravais lattice."""
from ase.lattice import identify_lattice
niggli_reduce(atoms)
lat, op = identify_lattice(atoms.cell, eps=eps)
update_cell_and_positions(atoms, lat.tocell(), np.linalg.inv(op))
def sort(atoms, tags=None):
"""Return a new Atoms object with sorted atomic order. The default
is to order according to chemical symbols, but if *tags* is not
None, it will be used instead. A stable sorting algorithm is used.
Example:
>>> from ase.build import bulk
>>> from ase.build.tools import sort
>>> # Two unit cells of NaCl:
>>> a = 5.64
>>> nacl = bulk('NaCl', 'rocksalt', a=a) * (2, 1, 1)
>>> nacl.get_chemical_symbols()
['Na', 'Cl', 'Na', 'Cl']
>>> nacl_sorted = sort(nacl)
>>> nacl_sorted.get_chemical_symbols()
['Cl', 'Cl', 'Na', 'Na']
>>> np.all(nacl_sorted.cell == nacl.cell)
True
"""
if tags is None:
tags = atoms.get_chemical_symbols()
else:
tags = list(tags)
deco = sorted([(tag, i) for i, tag in enumerate(tags)])
indices = [i for tag, i in deco]
return atoms[indices]
|