1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
# fmt: off
from math import pi, sqrt
import numpy as np
from ase.dft.kpoints import get_monkhorst_pack_size_and_offset
from ase.parallel import world
from ase.utils.cext import cextension
class DOS:
def __init__(self, calc, width=0.1, window=None, npts=401, comm=world):
"""Electronic Density Of States object.
calc: calculator object
Any ASE compliant calculator object.
width: float
Width of guassian smearing. Use width=0.0 for linear tetrahedron
interpolation.
window: tuple of two float
Use ``window=(emin, emax)``. If not specified, a window
big enough to hold all the eigenvalues will be used.
npts: int
Number of points.
comm: communicator object
MPI communicator for lti_dos
"""
self.comm = comm
self.npts = npts
self.width = width
self.w_k = calc.get_k_point_weights()
self.nspins = calc.get_number_of_spins()
self.e_skn = np.array([[calc.get_eigenvalues(kpt=k, spin=s)
for k in range(len(self.w_k))]
for s in range(self.nspins)])
try: # two Fermi levels
for i, eF in enumerate(calc.get_fermi_level()):
self.e_skn[i] -= eF
except TypeError: # a single Fermi level
self.e_skn -= calc.get_fermi_level()
if window is None:
emin = None
emax = None
else:
emin, emax = window
if emin is None:
emin = self.e_skn.min() - 5 * self.width
if emax is None:
emax = self.e_skn.max() + 5 * self.width
self.energies = np.linspace(emin, emax, npts)
if width == 0.0:
bzkpts = calc.get_bz_k_points()
size, _offset = get_monkhorst_pack_size_and_offset(bzkpts)
bz2ibz = calc.get_bz_to_ibz_map()
shape = (self.nspins,) + tuple(size) + (-1,)
self.e_skn = self.e_skn[:, bz2ibz].reshape(shape)
self.cell = calc.atoms.cell
def get_energies(self):
"""Return the array of energies used to sample the DOS.
The energies are reported relative to the Fermi level.
"""
return self.energies
def delta(self, energy):
"""Return a delta-function centered at 'energy'."""
x = -((self.energies - energy) / self.width)**2
return np.exp(x) / (sqrt(pi) * self.width)
def get_dos(self, spin=None):
"""Get array of DOS values.
The *spin* argument can be 0 or 1 (spin up or down) - if not
specified, the total DOS is returned.
"""
if spin is None:
if self.nspins == 2:
# Return the total DOS
return self.get_dos(spin=0) + self.get_dos(spin=1)
else:
return 2 * self.get_dos(spin=0)
elif spin == 1 and self.nspins == 1:
# For an unpolarized calculation, spin up and down are equivalent
spin = 0
if self.width == 0.0:
dos = linear_tetrahedron_integration(self.cell, self.e_skn[spin],
self.energies, comm=self.comm)
return dos
dos = np.zeros(self.npts)
for w, e_n in zip(self.w_k, self.e_skn[spin]):
for e in e_n:
dos += w * self.delta(e)
return dos
def linear_tetrahedron_integration(cell, eigs, energies,
weights=None, comm=world):
"""DOS from linear tetrahedron interpolation.
cell: 3x3 ndarray-like
Unit cell.
eigs: (n1, n2, n3, nbands)-shaped ndarray
Eigenvalues on a Monkhorst-Pack grid (not reduced).
energies: 1-d array-like
Energies where the DOS is calculated (must be a uniform grid).
weights: ndarray of shape (n1, n2, n3, nbands) or (n1, n2, n3, nbands, nw)
Weights. Defaults to a (n1, n2, n3, nbands)-shaped ndarray
filled with ones. Can also have an extra dimednsion if there are
nw weights.
comm: communicator object
MPI communicator for lti_dos
Returns:
DOS as an ndarray of same length as energies or as an
ndarray of shape (nw, len(energies)).
See:
Extensions of the tetrahedron method for evaluating
spectral properties of solids,
A. H. MacDonald, S. H. Vosko and P. T. Coleridge,
1979 J. Phys. C: Solid State Phys. 12 2991,
:doi:`10.1088/0022-3719/12/15/008`
"""
from scipy.spatial import Delaunay
# Find the 6 tetrahedra:
size = eigs.shape[:3]
B = (np.linalg.inv(cell) / size).T
indices = np.array([[i, j, k]
for i in [0, 1] for j in [0, 1] for k in [0, 1]])
dt = Delaunay(np.dot(indices, B))
if weights is None:
weights = np.ones_like(eigs)
if weights.ndim == 4:
extra_dimension_added = True
weights = weights[:, :, :, :, np.newaxis]
else:
extra_dimension_added = False
nweights = weights.shape[4]
dos = np.empty((nweights, len(energies)))
lti_dos(indices[dt.simplices], eigs, weights, energies, dos, comm)
dos /= np.prod(size)
if extra_dimension_added:
return dos[0]
return dos
@cextension
def lti_dos(simplices, eigs, weights, energies, dos, world):
shape = eigs.shape[:3]
nweights = weights.shape[-1]
dos[:] = 0.0
n = -1
for index in np.indices(shape).reshape((3, -1)).T:
n += 1
if n % world.size != world.rank:
continue
i = ((index + simplices) % shape).T
E = eigs[i[0], i[1], i[2]].reshape((4, -1))
W = weights[i[0], i[1], i[2]].reshape((4, -1, nweights))
for e, w in zip(E.T, W.transpose((1, 0, 2))):
lti_dos1(e, w, energies, dos)
dos /= 6.0
world.sum(dos)
def lti_dos1(e, w, energies, dos):
i = e.argsort()
e0, e1, e2, e3 = en = e[i]
w = w[i]
zero = energies[0]
if len(energies) > 1:
de = energies[1] - zero
nn = (np.floor((en - zero) / de).astype(int) + 1).clip(0,
len(energies))
else:
nn = (en > zero).astype(int)
n0, n1, n2, n3 = nn
if n1 > n0:
s = slice(n0, n1)
x = energies[s] - e0
f10 = x / (e1 - e0)
f20 = x / (e2 - e0)
f30 = x / (e3 - e0)
f01 = 1 - f10
f02 = 1 - f20
f03 = 1 - f30
g = f20 * f30 / (e1 - e0)
dos[:, s] += w.T.dot([f01 + f02 + f03,
f10,
f20,
f30]) * g
if n2 > n1:
delta = e3 - e0
s = slice(n1, n2)
x = energies[s]
f20 = (x - e0) / (e2 - e0)
f30 = (x - e0) / (e3 - e0)
f21 = (x - e1) / (e2 - e1)
f31 = (x - e1) / (e3 - e1)
f02 = 1 - f20
f03 = 1 - f30
f12 = 1 - f21
f13 = 1 - f31
g = 3 / delta * (f12 * f20 + f21 * f13)
dos[:, s] += w.T.dot([g * f03 / 3 + f02 * f20 * f12 / delta,
g * f12 / 3 + f13 * f13 * f21 / delta,
g * f21 / 3 + f20 * f20 * f12 / delta,
g * f30 / 3 + f31 * f13 * f21 / delta])
if n3 > n2:
s = slice(n2, n3)
x = energies[s] - e3
f03 = x / (e0 - e3)
f13 = x / (e1 - e3)
f23 = x / (e2 - e3)
f30 = 1 - f03
f31 = 1 - f13
f32 = 1 - f23
g = f03 * f13 / (e3 - e2)
dos[:, s] += w.T.dot([f03,
f13,
f23,
f30 + f31 + f32]) * g
|