1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
|
# fmt: off
import re
import warnings
from typing import Dict
import numpy as np
import ase # Annotations
from ase.cell import Cell
from ase.utils import jsonable
def monkhorst_pack(size):
"""Construct a uniform sampling of k-space of given size."""
if np.less_equal(size, 0).any():
raise ValueError(f'Illegal size: {list(size)}')
kpts = np.indices(size).transpose((1, 2, 3, 0)).reshape((-1, 3))
return (kpts + 0.5) / size - 0.5
def get_monkhorst_pack_size_and_offset(kpts):
"""Find Monkhorst-Pack size and offset.
Returns (size, offset), where::
kpts = monkhorst_pack(size) + offset.
The set of k-points must not have been symmetry reduced."""
if len(kpts) == 1:
return np.ones(3, int), np.array(kpts[0], dtype=float)
size = np.zeros(3, int)
for c in range(3):
# Determine increment between k-points along current axis
delta = max(np.diff(np.sort(kpts[:, c])))
# Determine number of k-points as inverse of distance between kpoints
if delta > 1e-8:
size[c] = int(round(1.0 / delta))
else:
size[c] = 1
if size.prod() == len(kpts):
kpts0 = monkhorst_pack(size)
offsets = kpts - kpts0
# All offsets must be identical:
if (np.ptp(offsets, axis=0) < 1e-9).all():
return size, offsets[0].copy()
raise ValueError('Not an ASE-style Monkhorst-Pack grid!')
def mindistance2monkhorstpack(atoms, *,
min_distance,
maxperdim=16,
even=True):
"""Find a Monkhorst-Pack grid (nx, ny, nz) with lowest number of
k-points in the *reducible* Brillouin zone, which still satisfying
a given minimum distance (`min_distance`) condition in real space
(nx, ny, nz)-supercell.
Compared to ase.calculators.calculator kptdensity2monkhorstpack
routine, this metric is based on a physical quantity (real space
distance), and it doesn't depend on non-physical quantities, such as
the cell vectors, since basis vectors can be always transformed
with integer determinant one matrices. In other words, it is
invariant to particular choice of cell representations.
On orthogonal cells, min_distance = 2 * np.pi * kptdensity.
"""
return _mindistance2monkhorstpack(atoms.cell, atoms.pbc,
min_distance, maxperdim, even)
def _mindistance2monkhorstpack(cell, pbc_c, min_distance, maxperdim, even):
from ase import Atoms
from ase.neighborlist import NeighborList
step = 2 if even else 1
nl = NeighborList([min_distance / 2], skin=0.0,
self_interaction=False, bothways=False)
def check(nkpts_c):
nl.update(Atoms('H', cell=cell @ np.diag(nkpts_c), pbc=pbc_c))
return len(nl.get_neighbors(0)[1]) == 0
def generate_mpgrids():
ranges = [range(step, maxperdim + 1, step)
if pbc else range(1, 2) for pbc in pbc_c]
nkpts_nc = np.column_stack([*map(np.ravel, np.meshgrid(*ranges))])
yield from sorted(nkpts_nc, key=np.prod)
try:
return next(filter(check, generate_mpgrids()))
except StopIteration:
raise ValueError('Could not find a proper k-point grid for the system.'
' Try running with a larger maxperdim.')
def get_monkhorst_shape(kpts):
warnings.warn('Use get_monkhorst_pack_size_and_offset()[0] instead.')
return get_monkhorst_pack_size_and_offset(kpts)[0]
def kpoint_convert(cell_cv, skpts_kc=None, ckpts_kv=None):
"""Convert k-points between scaled and cartesian coordinates.
Given the atomic unit cell, and either the scaled or cartesian k-point
coordinates, the other is determined.
The k-point arrays can be either a single point, or a list of points,
i.e. the dimension k can be empty or multidimensional.
"""
if ckpts_kv is None:
icell_cv = 2 * np.pi * np.linalg.pinv(cell_cv).T
return np.dot(skpts_kc, icell_cv)
elif skpts_kc is None:
return np.dot(ckpts_kv, cell_cv.T) / (2 * np.pi)
else:
raise KeyError('Either scaled or cartesian coordinates must be given.')
def parse_path_string(s):
"""Parse compact string representation of BZ path.
A path string can have several non-connected sections separated by
commas. The return value is a list of sections where each section is a
list of labels.
Examples:
>>> parse_path_string('GX')
[['G', 'X']]
>>> parse_path_string('GX,M1A')
[['G', 'X'], ['M1', 'A']]
"""
paths = []
for path in s.split(','):
names = [name
for name in re.split(r'([A-Z][a-z0-9]*)', path)
if name]
paths.append(names)
return paths
def resolve_kpt_path_string(path, special_points):
paths = parse_path_string(path)
coords = [np.array([special_points[sym] for sym in subpath]).reshape(-1, 3)
for subpath in paths]
return paths, coords
def resolve_custom_points(pathspec, special_points, eps):
"""Resolve a path specification into a string.
The path specification is a list path segments, each segment being a kpoint
label or kpoint coordinate, or a single such segment.
Return a string representing the same path. Generic kpoint labels
are generated dynamically as necessary, updating the special_point
dictionary if necessary. The tolerance eps is used to see whether
coordinates are close enough to a special point to deserve being
labelled as such."""
# This should really run on Cartesian coordinates but we'll probably
# be lazy and call it on scaled ones.
# We may add new points below so take a copy of the input:
special_points = dict(special_points)
if len(pathspec) == 0:
return '', special_points
if isinstance(pathspec, str):
pathspec = parse_path_string(pathspec)
def looks_like_single_kpoint(obj):
if isinstance(obj, str):
return True
try:
arr = np.asarray(obj, float)
except ValueError:
return False
else:
return arr.shape == (3,)
# We accept inputs that are either
# 1) string notation
# 2) list of kpoints (each either a string or three floats)
# 3) list of list of kpoints; each toplevel list is a contiguous subpath
# Here we detect form 2 and normalize to form 3:
for thing in pathspec:
if looks_like_single_kpoint(thing):
pathspec = [pathspec]
break
def name_generator():
counter = 0
while True:
name = f'Kpt{counter}'
yield name
counter += 1
custom_names = name_generator()
labelseq = []
for subpath in pathspec:
for kpt in subpath:
if isinstance(kpt, str):
if kpt not in special_points:
raise KeyError('No kpoint "{}" among "{}"'
.format(kpt,
''.join(special_points)))
labelseq.append(kpt)
continue
kpt = np.asarray(kpt, float)
if kpt.shape != (3,):
raise ValueError(f'Not a valid kpoint: {kpt}')
for key, val in special_points.items():
if np.abs(kpt - val).max() < eps:
labelseq.append(key)
break # Already present
else:
# New special point - search for name we haven't used yet:
name = next(custom_names)
while name in special_points:
name = next(custom_names)
special_points[name] = kpt
labelseq.append(name)
labelseq.append(',')
last = labelseq.pop()
assert last == ','
return ''.join(labelseq), special_points
def normalize_special_points(special_points):
dct = {}
for name, value in special_points.items():
if not isinstance(name, str):
raise TypeError('Expected name to be a string')
if np.shape(value) != (3,):
raise ValueError('Expected 3 kpoint coordinates')
dct[name] = np.asarray(value, float)
return dct
@jsonable('bandpath')
class BandPath:
"""Represents a Brillouin zone path or bandpath.
A band path has a unit cell, a path specification, special points,
and interpolated k-points. Band paths are typically created
indirectly using the :class:`~ase.geometry.Cell` or
:class:`~ase.lattice.BravaisLattice` classes:
>>> from ase.lattice import CUB
>>> path = CUB(3).bandpath()
>>> path
BandPath(path='GXMGRX,MR', cell=[3x3], special_points={GMRX}, kpts=[40x3])
Band paths support JSON I/O:
>>> from ase.io.jsonio import read_json
>>> path.write('mybandpath.json')
>>> read_json('mybandpath.json')
BandPath(path='GXMGRX,MR', cell=[3x3], special_points={GMRX}, kpts=[40x3])
"""
def __init__(self, cell, kpts=None,
special_points=None, path=None):
if kpts is None:
kpts = np.empty((0, 3))
if special_points is None:
special_points = {}
else:
special_points = normalize_special_points(special_points)
if path is None:
path = ''
cell = Cell(cell)
self._cell = cell
kpts = np.asarray(kpts)
assert kpts.ndim == 2 and kpts.shape[1] == 3 and kpts.dtype == float
self._icell = self.cell.reciprocal()
self._kpts = kpts
self._special_points = special_points
if not isinstance(path, str):
raise TypeError(f'path must be a string; was {path!r}')
self._path = path
@property
def cell(self) -> Cell:
"""The :class:`~ase.cell.Cell` of this BandPath."""
return self._cell
@property
def icell(self) -> Cell:
"""Reciprocal cell of this BandPath as a :class:`~ase.cell.Cell`."""
return self._icell
@property
def kpts(self) -> np.ndarray:
"""The kpoints of this BandPath as an array of shape (nkpts, 3).
The kpoints are given in units of the reciprocal cell."""
return self._kpts
@property
def special_points(self) -> Dict[str, np.ndarray]:
"""Special points of this BandPath as a dictionary.
The dictionary maps names (such as `'G'`) to kpoint coordinates
in units of the reciprocal cell as a 3-element numpy array.
It's unwise to edit this dictionary directly. If you need that,
consider deepcopying it."""
return self._special_points
@property
def path(self) -> str:
"""The string specification of this band path.
This is a specification of the form `'GXWKGLUWLK,UX'`.
Comma marks a discontinuous jump: K is not connected to U."""
return self._path
def transform(self, op: np.ndarray) -> 'BandPath':
"""Apply 3x3 matrix to this BandPath and return new BandPath.
This is useful for converting the band path to another cell.
The operation will typically be a permutation/flipping
established by a function such as Niggli reduction."""
# XXX acceptable operations are probably only those
# who come from Niggli reductions (permutations etc.)
#
# We should insert a check.
# I wonder which operations are valid? They won't be valid
# if they change lengths, volume etc.
special_points = {
name: value @ op for name, value in self.special_points.items()
}
return BandPath(op.T @ self.cell, kpts=self.kpts @ op,
special_points=special_points,
path=self.path)
def todict(self):
return {'kpts': self.kpts,
'special_points': self.special_points,
'labelseq': self.path,
'cell': self.cell}
def interpolate(
self,
path: str = None,
npoints: int = None,
special_points: Dict[str, np.ndarray] = None,
density: float = None,
) -> 'BandPath':
"""Create new bandpath, (re-)interpolating kpoints from this one."""
if path is None:
path = self.path
if special_points is None:
special_points = self.special_points
_pathnames, pathcoords = resolve_kpt_path_string(path, special_points)
kpts, _x, _X = paths2kpts(pathcoords, self.cell, npoints, density)
return BandPath(self.cell, kpts, path=path,
special_points=special_points)
def _scale(self, coords):
return np.dot(coords, self.icell)
def __repr__(self):
return ('{}(path={}, cell=[3x3], special_points={{{}}}, kpts=[{}x3])'
.format(self.__class__.__name__,
repr(self.path),
''.join(sorted(self.special_points)),
len(self.kpts)))
def cartesian_kpts(self) -> np.ndarray:
"""Get Cartesian kpoints from this bandpath."""
return self._scale(self.kpts)
def __iter__(self):
"""XXX Compatibility hack for bandpath() function.
bandpath() now returns a BandPath object, which is a Good
Thing. However it used to return a tuple of (kpts, x_axis,
special_x_coords), and people would use tuple unpacking for
those.
This function makes tuple unpacking work in the same way.
It will be removed in the future.
"""
import warnings
warnings.warn('Please do not use (kpts, x, X) = bandpath(...). '
'Use path = bandpath(...) and then kpts = path.kpts and '
'(x, X, labels) = path.get_linear_kpoint_axis().')
yield self.kpts
x, xspecial, _ = self.get_linear_kpoint_axis()
yield x
yield xspecial
def __getitem__(self, index):
# Temp compatibility stuff, see __iter__
return tuple(self)[index]
def get_linear_kpoint_axis(self, eps=1e-5):
"""Define x axis suitable for plotting a band structure.
See :func:`ase.dft.kpoints.labels_from_kpts`."""
index2name = self._find_special_point_indices(eps)
indices = sorted(index2name)
labels = [index2name[index] for index in indices]
xcoords, special_xcoords = indices_to_axis_coords(
indices, self.kpts, self.cell)
return xcoords, special_xcoords, labels
def _find_special_point_indices(self, eps):
"""Find indices of kpoints which are close to special points.
The result is returned as a dictionary mapping indices to labels."""
# XXX must work in Cartesian coordinates for comparison to eps
# to fully make sense!
index2name = {}
nkpts = len(self.kpts)
for name, kpt in self.special_points.items():
displacements = self.kpts - kpt[np.newaxis, :]
distances = np.linalg.norm(displacements, axis=1)
args = np.argwhere(distances < eps)
for arg in args.flat:
dist = distances[arg]
# Check if an adjacent point exists and is even closer:
neighbours = distances[max(arg - 1, 0):min(arg + 1, nkpts - 1)]
if not any(neighbours < dist):
index2name[arg] = name
return index2name
def plot(self, **plotkwargs):
"""Visualize this bandpath.
Plots the irreducible Brillouin zone and this bandpath."""
import ase.dft.bz as bz
# We previously had a "dimension=3" argument which is now unused.
plotkwargs.pop('dimension', None)
special_points = self.special_points
labelseq, coords = resolve_kpt_path_string(self.path,
special_points)
paths = []
points_already_plotted = set()
for subpath_labels, subpath_coords in zip(labelseq, coords):
subpath_coords = np.array(subpath_coords)
points_already_plotted.update(subpath_labels)
paths.append((subpath_labels, self._scale(subpath_coords)))
# Add each special point as a single-point subpath if they were
# not plotted already:
for label, point in special_points.items():
if label not in points_already_plotted:
paths.append(([label], [self._scale(point)]))
kw = {'vectors': True,
'pointstyle': {'marker': '.'}}
kw.update(plotkwargs)
return bz.bz_plot(self.cell, paths=paths,
points=self.cartesian_kpts(),
**kw)
def free_electron_band_structure(
self, **kwargs
) -> 'ase.spectrum.band_structure.BandStructure':
"""Return band structure of free electrons for this bandpath.
Keyword arguments are passed to
:class:`~ase.calculators.test.FreeElectrons`.
This is for mostly testing and visualization."""
from ase import Atoms
from ase.calculators.test import FreeElectrons
from ase.spectrum.band_structure import calculate_band_structure
atoms = Atoms(cell=self.cell, pbc=True)
atoms.calc = FreeElectrons(**kwargs)
bs = calculate_band_structure(atoms, path=self)
return bs
def bandpath(path, cell, npoints=None, density=None, special_points=None,
eps=2e-4):
"""Make a list of kpoints defining the path between the given points.
path: list or str
Can be:
* a string that parse_path_string() understands: 'GXL'
* a list of BZ points: [(0, 0, 0), (0.5, 0, 0)]
* or several lists of BZ points if the the path is not continuous.
cell: 3x3
Unit cell of the atoms.
npoints: int
Length of the output kpts list. If too small, at least the beginning
and ending point of each path segment will be used. If None (default),
it will be calculated using the supplied density or a default one.
density: float
k-points per 1/A on the output kpts list. If npoints is None,
the number of k-points in the output list will be:
npoints = density * path total length (in Angstroms).
If density is None (default), use 5 k-points per A⁻¹.
If the calculated npoints value is less than 50, a minimum value of 50
will be used.
special_points: dict or None
Dictionary mapping names to special points. If None, the special
points will be derived from the cell.
eps: float
Precision used to identify Bravais lattice, deducing special points.
You may define npoints or density but not both.
Return a :class:`~ase.dft.kpoints.BandPath` object."""
cell = Cell.ascell(cell)
return cell.bandpath(path, npoints=npoints, density=density,
special_points=special_points, eps=eps)
DEFAULT_KPTS_DENSITY = 5 # points per 1/Angstrom
def paths2kpts(paths, cell, npoints=None, density=None):
if npoints is not None and density is not None:
raise ValueError('You may define npoints or density, but not both.')
points = np.concatenate(paths)
dists = points[1:] - points[:-1]
lengths = [np.linalg.norm(d) for d in kpoint_convert(cell, skpts_kc=dists)]
i = 0
for path in paths[:-1]:
i += len(path)
lengths[i - 1] = 0
length = sum(lengths)
if npoints is None:
if density is None:
density = DEFAULT_KPTS_DENSITY
# Set npoints using the length of the path
npoints = int(round(length * density))
kpts = []
x0 = 0
x = []
X = [0]
for P, d, L in zip(points[:-1], dists, lengths):
diff = length - x0
if abs(diff) < 1e-6:
n = 0
else:
n = max(2, int(round(L * (npoints - len(x)) / diff)))
for t in np.linspace(0, 1, n)[:-1]:
kpts.append(P + t * d)
x.append(x0 + t * L)
x0 += L
X.append(x0)
if len(points):
kpts.append(points[-1])
x.append(x0)
if len(kpts) == 0:
kpts = np.empty((0, 3))
return np.array(kpts), np.array(x), np.array(X)
get_bandpath = bandpath # old name
def find_bandpath_kinks(cell, kpts, eps=1e-5):
"""Find indices of those kpoints that are not interior to a line segment."""
# XXX Should use the Cartesian kpoints.
# Else comparison to eps will be anisotropic and hence arbitrary.
diffs = kpts[1:] - kpts[:-1]
kinks = abs(diffs[1:] - diffs[:-1]).sum(1) > eps
N = len(kpts)
indices = []
if N > 0:
indices.append(0)
indices.extend(np.arange(1, N - 1)[kinks])
indices.append(N - 1)
return indices
def labels_from_kpts(kpts, cell, eps=1e-5, special_points=None):
"""Get an x-axis to be used when plotting a band structure.
The first of the returned lists can be used as a x-axis when plotting
the band structure. The second list can be used as xticks, and the third
as xticklabels.
Parameters:
kpts: list
List of scaled k-points.
cell: list
Unit cell of the atomic structure.
Returns:
Three arrays; the first is a list of cumulative distances between k-points,
the second is x coordinates of the special points,
the third is the special points as strings.
"""
if special_points is None:
special_points = get_special_points(cell)
points = np.asarray(kpts)
# XXX Due to this mechanism, we are blind to special points
# that lie on straight segments such as [K, G, -K].
indices = find_bandpath_kinks(cell, kpts, eps=1e-5)
labels = []
for kpt in points[indices]:
for label, k in special_points.items():
if abs(kpt - k).sum() < eps:
break
else:
# No exact match. Try modulus 1:
for label, k in special_points.items():
if abs((kpt - k) % 1).sum() < eps:
break
else:
label = '?'
labels.append(label)
xcoords, ixcoords = indices_to_axis_coords(indices, points, cell)
return xcoords, ixcoords, labels
def indices_to_axis_coords(indices, points, cell):
jump = False # marks a discontinuity in the path
xcoords = [0]
for i1, i2 in zip(indices[:-1], indices[1:]):
if not jump and i1 + 1 == i2:
length = 0
jump = True # we don't want two jumps in a row
else:
diff = points[i2] - points[i1]
length = np.linalg.norm(kpoint_convert(cell, skpts_kc=diff))
jump = False
xcoords.extend(np.linspace(0, length, i2 - i1 + 1)[1:] + xcoords[-1])
xcoords = np.array(xcoords)
return xcoords, xcoords[indices]
special_paths = {
'cubic': 'GXMGRX,MR',
'fcc': 'GXWKGLUWLK,UX',
'bcc': 'GHNGPH,PN',
'tetragonal': 'GXMGZRAZXR,MA',
'orthorhombic': 'GXSYGZURTZ,YT,UX,SR',
'hexagonal': 'GMKGALHA,LM,KH',
'monoclinic': 'GYHCEM1AXH1,MDZ,YD',
'rhombohedral type 1': 'GLB1,BZGX,QFP1Z,LP',
'rhombohedral type 2': 'GPZQGFP1Q1LZ'}
def get_special_points(cell, lattice=None, eps=2e-4):
"""Return dict of special points.
The definitions are from a paper by Wahyu Setyawana and Stefano
Curtarolo::
https://doi.org/10.1016/j.commatsci.2010.05.010
cell: 3x3 ndarray
Unit cell.
lattice: str
Optionally check that the cell is one of the following: cubic, fcc,
bcc, orthorhombic, tetragonal, hexagonal or monoclinic.
eps: float
Tolerance for cell-check.
"""
if isinstance(cell, str):
warnings.warn('Please call this function with cell as the first '
'argument')
lattice, cell = cell, lattice
cell = Cell.ascell(cell)
# We create the bandpath because we want to transform the kpoints too,
# from the canonical cell to the given one.
#
# Note that this function is missing a tolerance, epsilon.
path = cell.bandpath(npoints=0)
return path.special_points
def monkhorst_pack_interpolate(path, values, icell, bz2ibz,
size, offset=(0, 0, 0), pad_width=2):
"""Interpolate values from Monkhorst-Pack sampling.
`monkhorst_pack_interpolate` takes a set of `values`, for example
eigenvalues, that are resolved on a Monkhorst Pack k-point grid given by
`size` and `offset` and interpolates the values onto the k-points
in `path`.
Note
----
For the interpolation to work, path has to lie inside the domain
that is spanned by the MP kpoint grid given by size and offset.
To try to ensure this we expand the domain slightly by adding additional
entries along the edges and sides of the domain with values determined by
wrapping the values to the opposite side of the domain. In this way we
assume that the function to be interpolated is a periodic function in
k-space. The padding width is determined by the `pad_width` parameter.
Parameters
----------
path: (nk, 3) array-like
Desired path in units of reciprocal lattice vectors.
values: (nibz, ...) array-like
Values on Monkhorst-Pack grid.
icell: (3, 3) array-like
Reciprocal lattice vectors.
bz2ibz: (nbz,) array-like of int
Map from nbz points in BZ to nibz reduced points in IBZ.
size: (3,) array-like of int
Size of Monkhorst-Pack grid.
offset: (3,) array-like
Offset of Monkhorst-Pack grid.
pad_width: int
Padding width to aid interpolation
Returns
-------
(nbz,) array-like
*values* interpolated to *path*.
"""
from scipy.interpolate import LinearNDInterpolator
path = (np.asarray(path) + 0.5) % 1 - 0.5
path = np.dot(path, icell)
# Fold out values from IBZ to BZ:
v = np.asarray(values)[bz2ibz]
v = v.reshape(tuple(size) + v.shape[1:])
# Create padded Monkhorst-Pack grid:
size = np.asarray(size)
i = (np.indices(size + 2 * pad_width)
.transpose((1, 2, 3, 0)).reshape((-1, 3)))
k = (i - pad_width + 0.5) / size - 0.5 + offset
k = np.dot(k, icell)
# Fill in boundary values:
V = np.pad(v, [(pad_width, pad_width)] * 3 +
[(0, 0)] * (v.ndim - 3), mode="wrap")
interpolate = LinearNDInterpolator(k, V.reshape((-1,) + V.shape[3:]))
interpolated_points = interpolate(path)
# NaN values indicate points outside interpolation domain, if fail
# try increasing padding
assert not np.isnan(interpolated_points).any(), \
"Points outside interpolation domain. Try increasing pad_width."
return interpolated_points
# ChadiCohen k point grids. The k point grids are given in units of the
# reciprocal unit cell. The variables are named after the following
# convention: cc+'<Nkpoints>'+_+'shape'. For example an 18 k point
# sq(3)xsq(3) is named 'cc18_sq3xsq3'.
cc6_1x1 = np.array([
1, 1, 0, 1, 0, 0, 0, -1, 0, -1, -1, 0, -1, 0, 0,
0, 1, 0]).reshape((6, 3)) / 3.0
cc12_2x3 = np.array([
3, 4, 0, 3, 10, 0, 6, 8, 0, 3, -2, 0, 6, -4, 0,
6, 2, 0, -3, 8, 0, -3, 2, 0, -3, -4, 0, -6, 4, 0, -6, -2, 0, -6,
-8, 0]).reshape((12, 3)) / 18.0
cc18_sq3xsq3 = np.array([
2, 2, 0, 4, 4, 0, 8, 2, 0, 4, -2, 0, 8, -4,
0, 10, -2, 0, 10, -8, 0, 8, -10, 0, 2, -10, 0, 4, -8, 0, -2, -8,
0, 2, -4, 0, -4, -4, 0, -2, -2, 0, -4, 2, 0, -2, 4, 0, -8, 4, 0,
-4, 8, 0]).reshape((18, 3)) / 18.0
cc18_1x1 = np.array([
2, 4, 0, 2, 10, 0, 4, 8, 0, 8, 4, 0, 8, 10, 0,
10, 8, 0, 2, -2, 0, 4, -4, 0, 4, 2, 0, -2, 8, 0, -2, 2, 0, -2, -4,
0, -4, 4, 0, -4, -2, 0, -4, -8, 0, -8, 2, 0, -8, -4, 0, -10, -2,
0]).reshape((18, 3)) / 18.0
cc54_sq3xsq3 = np.array([
4, -10, 0, 6, -10, 0, 0, -8, 0, 2, -8, 0, 6,
-8, 0, 8, -8, 0, -4, -6, 0, -2, -6, 0, 2, -6, 0, 4, -6, 0, 8, -6,
0, 10, -6, 0, -6, -4, 0, -2, -4, 0, 0, -4, 0, 4, -4, 0, 6, -4, 0,
10, -4, 0, -6, -2, 0, -4, -2, 0, 0, -2, 0, 2, -2, 0, 6, -2, 0, 8,
-2, 0, -8, 0, 0, -4, 0, 0, -2, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, 0,
-8, 2, 0, -6, 2, 0, -2, 2, 0, 0, 2, 0, 4, 2, 0, 6, 2, 0, -10, 4,
0, -6, 4, 0, -4, 4, 0, 0, 4, 0, 2, 4, 0, 6, 4, 0, -10, 6, 0, -8,
6, 0, -4, 6, 0, -2, 6, 0, 2, 6, 0, 4, 6, 0, -8, 8, 0, -6, 8, 0,
-2, 8, 0, 0, 8, 0, -6, 10, 0, -4, 10, 0]).reshape((54, 3)) / 18.0
cc54_1x1 = np.array([
2, 2, 0, 4, 4, 0, 8, 8, 0, 6, 8, 0, 4, 6, 0, 6,
10, 0, 4, 10, 0, 2, 6, 0, 2, 8, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, -2,
6, 0, -2, 4, 0, -4, 6, 0, -6, 4, 0, -4, 2, 0, -6, 2, 0, -2, 0, 0,
-4, 0, 0, -8, 0, 0, -8, -2, 0, -6, -2, 0, -10, -4, 0, -10, -6, 0,
-6, -4, 0, -8, -6, 0, -2, -2, 0, -4, -4, 0, -8, -8, 0, 4, -2, 0,
6, -2, 0, 6, -4, 0, 2, 0, 0, 4, 0, 0, 6, 2, 0, 6, 4, 0, 8, 6, 0,
8, 0, 0, 8, 2, 0, 10, 4, 0, 10, 6, 0, 2, -4, 0, 2, -6, 0, 4, -6,
0, 0, -2, 0, 0, -4, 0, -2, -6, 0, -4, -6, 0, -6, -8, 0, 0, -8, 0,
-2, -8, 0, -4, -10, 0, -6, -10, 0]).reshape((54, 3)) / 18.0
cc162_sq3xsq3 = np.array([
-8, 16, 0, -10, 14, 0, -7, 14, 0, -4, 14,
0, -11, 13, 0, -8, 13, 0, -5, 13, 0, -2, 13, 0, -13, 11, 0, -10,
11, 0, -7, 11, 0, -4, 11, 0, -1, 11, 0, 2, 11, 0, -14, 10, 0, -11,
10, 0, -8, 10, 0, -5, 10, 0, -2, 10, 0, 1, 10, 0, 4, 10, 0, -16,
8, 0, -13, 8, 0, -10, 8, 0, -7, 8, 0, -4, 8, 0, -1, 8, 0, 2, 8, 0,
5, 8, 0, 8, 8, 0, -14, 7, 0, -11, 7, 0, -8, 7, 0, -5, 7, 0, -2, 7,
0, 1, 7, 0, 4, 7, 0, 7, 7, 0, 10, 7, 0, -13, 5, 0, -10, 5, 0, -7,
5, 0, -4, 5, 0, -1, 5, 0, 2, 5, 0, 5, 5, 0, 8, 5, 0, 11, 5, 0,
-14, 4, 0, -11, 4, 0, -8, 4, 0, -5, 4, 0, -2, 4, 0, 1, 4, 0, 4, 4,
0, 7, 4, 0, 10, 4, 0, -13, 2, 0, -10, 2, 0, -7, 2, 0, -4, 2, 0,
-1, 2, 0, 2, 2, 0, 5, 2, 0, 8, 2, 0, 11, 2, 0, -11, 1, 0, -8, 1,
0, -5, 1, 0, -2, 1, 0, 1, 1, 0, 4, 1, 0, 7, 1, 0, 10, 1, 0, 13, 1,
0, -10, -1, 0, -7, -1, 0, -4, -1, 0, -1, -1, 0, 2, -1, 0, 5, -1,
0, 8, -1, 0, 11, -1, 0, 14, -1, 0, -11, -2, 0, -8, -2, 0, -5, -2,
0, -2, -2, 0, 1, -2, 0, 4, -2, 0, 7, -2, 0, 10, -2, 0, 13, -2, 0,
-10, -4, 0, -7, -4, 0, -4, -4, 0, -1, -4, 0, 2, -4, 0, 5, -4, 0,
8, -4, 0, 11, -4, 0, 14, -4, 0, -8, -5, 0, -5, -5, 0, -2, -5, 0,
1, -5, 0, 4, -5, 0, 7, -5, 0, 10, -5, 0, 13, -5, 0, 16, -5, 0, -7,
-7, 0, -4, -7, 0, -1, -7, 0, 2, -7, 0, 5, -7, 0, 8, -7, 0, 11, -7,
0, 14, -7, 0, 17, -7, 0, -8, -8, 0, -5, -8, 0, -2, -8, 0, 1, -8,
0, 4, -8, 0, 7, -8, 0, 10, -8, 0, 13, -8, 0, 16, -8, 0, -7, -10,
0, -4, -10, 0, -1, -10, 0, 2, -10, 0, 5, -10, 0, 8, -10, 0, 11,
-10, 0, 14, -10, 0, 17, -10, 0, -5, -11, 0, -2, -11, 0, 1, -11, 0,
4, -11, 0, 7, -11, 0, 10, -11, 0, 13, -11, 0, 16, -11, 0, -1, -13,
0, 2, -13, 0, 5, -13, 0, 8, -13, 0, 11, -13, 0, 14, -13, 0, 1,
-14, 0, 4, -14, 0, 7, -14, 0, 10, -14, 0, 13, -14, 0, 5, -16, 0,
8, -16, 0, 11, -16, 0, 7, -17, 0, 10, -17, 0]).reshape((162, 3)) / 27.0
cc162_1x1 = np.array([
-8, -16, 0, -10, -14, 0, -7, -14, 0, -4, -14,
0, -11, -13, 0, -8, -13, 0, -5, -13, 0, -2, -13, 0, -13, -11, 0,
-10, -11, 0, -7, -11, 0, -4, -11, 0, -1, -11, 0, 2, -11, 0, -14,
-10, 0, -11, -10, 0, -8, -10, 0, -5, -10, 0, -2, -10, 0, 1, -10,
0, 4, -10, 0, -16, -8, 0, -13, -8, 0, -10, -8, 0, -7, -8, 0, -4,
-8, 0, -1, -8, 0, 2, -8, 0, 5, -8, 0, 8, -8, 0, -14, -7, 0, -11,
-7, 0, -8, -7, 0, -5, -7, 0, -2, -7, 0, 1, -7, 0, 4, -7, 0, 7, -7,
0, 10, -7, 0, -13, -5, 0, -10, -5, 0, -7, -5, 0, -4, -5, 0, -1,
-5, 0, 2, -5, 0, 5, -5, 0, 8, -5, 0, 11, -5, 0, -14, -4, 0, -11,
-4, 0, -8, -4, 0, -5, -4, 0, -2, -4, 0, 1, -4, 0, 4, -4, 0, 7, -4,
0, 10, -4, 0, -13, -2, 0, -10, -2, 0, -7, -2, 0, -4, -2, 0, -1,
-2, 0, 2, -2, 0, 5, -2, 0, 8, -2, 0, 11, -2, 0, -11, -1, 0, -8,
-1, 0, -5, -1, 0, -2, -1, 0, 1, -1, 0, 4, -1, 0, 7, -1, 0, 10, -1,
0, 13, -1, 0, -10, 1, 0, -7, 1, 0, -4, 1, 0, -1, 1, 0, 2, 1, 0, 5,
1, 0, 8, 1, 0, 11, 1, 0, 14, 1, 0, -11, 2, 0, -8, 2, 0, -5, 2, 0,
-2, 2, 0, 1, 2, 0, 4, 2, 0, 7, 2, 0, 10, 2, 0, 13, 2, 0, -10, 4,
0, -7, 4, 0, -4, 4, 0, -1, 4, 0, 2, 4, 0, 5, 4, 0, 8, 4, 0, 11, 4,
0, 14, 4, 0, -8, 5, 0, -5, 5, 0, -2, 5, 0, 1, 5, 0, 4, 5, 0, 7, 5,
0, 10, 5, 0, 13, 5, 0, 16, 5, 0, -7, 7, 0, -4, 7, 0, -1, 7, 0, 2,
7, 0, 5, 7, 0, 8, 7, 0, 11, 7, 0, 14, 7, 0, 17, 7, 0, -8, 8, 0,
-5, 8, 0, -2, 8, 0, 1, 8, 0, 4, 8, 0, 7, 8, 0, 10, 8, 0, 13, 8, 0,
16, 8, 0, -7, 10, 0, -4, 10, 0, -1, 10, 0, 2, 10, 0, 5, 10, 0, 8,
10, 0, 11, 10, 0, 14, 10, 0, 17, 10, 0, -5, 11, 0, -2, 11, 0, 1,
11, 0, 4, 11, 0, 7, 11, 0, 10, 11, 0, 13, 11, 0, 16, 11, 0, -1,
13, 0, 2, 13, 0, 5, 13, 0, 8, 13, 0, 11, 13, 0, 14, 13, 0, 1, 14,
0, 4, 14, 0, 7, 14, 0, 10, 14, 0, 13, 14, 0, 5, 16, 0, 8, 16, 0,
11, 16, 0, 7, 17, 0, 10, 17, 0]).reshape((162, 3)) / 27.0
# The following is a list of the critical points in the 1st Brillouin zone
# for some typical crystal structures following the conventions of Setyawan
# and Curtarolo [https://doi.org/10.1016/j.commatsci.2010.05.010].
#
# In units of the reciprocal basis vectors.
#
# See http://en.wikipedia.org/wiki/Brillouin_zone
sc_special_points = {
'cubic': {'G': [0, 0, 0],
'M': [1 / 2, 1 / 2, 0],
'R': [1 / 2, 1 / 2, 1 / 2],
'X': [0, 1 / 2, 0]},
'fcc': {'G': [0, 0, 0],
'K': [3 / 8, 3 / 8, 3 / 4],
'L': [1 / 2, 1 / 2, 1 / 2],
'U': [5 / 8, 1 / 4, 5 / 8],
'W': [1 / 2, 1 / 4, 3 / 4],
'X': [1 / 2, 0, 1 / 2]},
'bcc': {'G': [0, 0, 0],
'H': [1 / 2, -1 / 2, 1 / 2],
'P': [1 / 4, 1 / 4, 1 / 4],
'N': [0, 0, 1 / 2]},
'tetragonal': {'G': [0, 0, 0],
'A': [1 / 2, 1 / 2, 1 / 2],
'M': [1 / 2, 1 / 2, 0],
'R': [0, 1 / 2, 1 / 2],
'X': [0, 1 / 2, 0],
'Z': [0, 0, 1 / 2]},
'orthorhombic': {'G': [0, 0, 0],
'R': [1 / 2, 1 / 2, 1 / 2],
'S': [1 / 2, 1 / 2, 0],
'T': [0, 1 / 2, 1 / 2],
'U': [1 / 2, 0, 1 / 2],
'X': [1 / 2, 0, 0],
'Y': [0, 1 / 2, 0],
'Z': [0, 0, 1 / 2]},
'hexagonal': {'G': [0, 0, 0],
'A': [0, 0, 1 / 2],
'H': [1 / 3, 1 / 3, 1 / 2],
'K': [1 / 3, 1 / 3, 0],
'L': [1 / 2, 0, 1 / 2],
'M': [1 / 2, 0, 0]}}
# Old version of dictionary kept for backwards compatibility.
# Not for ordinary use.
ibz_points = {'cubic': {'Gamma': [0, 0, 0],
'X': [0, 0 / 2, 1 / 2],
'R': [1 / 2, 1 / 2, 1 / 2],
'M': [0 / 2, 1 / 2, 1 / 2]},
'fcc': {'Gamma': [0, 0, 0],
'X': [1 / 2, 0, 1 / 2],
'W': [1 / 2, 1 / 4, 3 / 4],
'K': [3 / 8, 3 / 8, 3 / 4],
'U': [5 / 8, 1 / 4, 5 / 8],
'L': [1 / 2, 1 / 2, 1 / 2]},
'bcc': {'Gamma': [0, 0, 0],
'H': [1 / 2, -1 / 2, 1 / 2],
'N': [0, 0, 1 / 2],
'P': [1 / 4, 1 / 4, 1 / 4]},
'hexagonal': {'Gamma': [0, 0, 0],
'M': [0, 1 / 2, 0],
'K': [-1 / 3, 1 / 3, 0],
'A': [0, 0, 1 / 2],
'L': [0, 1 / 2, 1 / 2],
'H': [-1 / 3, 1 / 3, 1 / 2]},
'tetragonal': {'Gamma': [0, 0, 0],
'X': [1 / 2, 0, 0],
'M': [1 / 2, 1 / 2, 0],
'Z': [0, 0, 1 / 2],
'R': [1 / 2, 0, 1 / 2],
'A': [1 / 2, 1 / 2, 1 / 2]},
'orthorhombic': {'Gamma': [0, 0, 0],
'R': [1 / 2, 1 / 2, 1 / 2],
'S': [1 / 2, 1 / 2, 0],
'T': [0, 1 / 2, 1 / 2],
'U': [1 / 2, 0, 1 / 2],
'X': [1 / 2, 0, 0],
'Y': [0, 1 / 2, 0],
'Z': [0, 0, 1 / 2]}}
|