1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
# fmt: off
import numpy as np
from ase.io.jsonio import read_json, write_json
class STM:
def __init__(self, atoms, symmetries=None, use_density=False):
"""Scanning tunneling microscope.
atoms: Atoms object or filename
Atoms to scan or name of file to read LDOS from.
symmetries: list of int
List of integers 0, 1, and/or 2 indicating which surface
symmetries have been used to reduce the number of k-points
for the DFT calculation. The three integers correspond to
the following three symmetry operations::
[-1 0] [ 1 0] [ 0 1]
[ 0 1] [ 0 -1] [ 1 0]
use_density: bool
Use the electron density instead of the LDOS.
"""
self.use_density = use_density
if isinstance(atoms, str):
with open(atoms) as fd:
self.ldos, self.bias, self.cell = read_json(fd,
always_array=False)
self.atoms = None
else:
self.atoms = atoms
self.cell = atoms.cell
self.bias = None
self.ldos = None
assert not self.cell[2, :2].any() and not self.cell[:2, 2].any()
self.symmetries = symmetries or []
def calculate_ldos(self, bias):
"""Calculate local density of states for given bias."""
if self.ldos is not None and bias == self.bias:
return
self.bias = bias
calc = self.atoms.calc
if self.use_density:
self.ldos = calc.get_pseudo_density()
return
if bias < 0:
emin = bias
emax = 0.0
else:
emin = 0
emax = bias
nbands = calc.get_number_of_bands()
weights = calc.get_k_point_weights()
nkpts = len(weights)
nspins = calc.get_number_of_spins()
eigs = np.array([[calc.get_eigenvalues(k, s)
for k in range(nkpts)]
for s in range(nspins)])
eigs -= calc.get_fermi_level()
ldos = np.zeros(calc.get_pseudo_wave_function(0, 0, 0).shape)
for s in range(nspins):
for k in range(nkpts):
for n in range(nbands):
e = eigs[s, k, n]
if emin < e < emax:
psi = calc.get_pseudo_wave_function(n, k, s)
ldos += weights[k] * (psi * np.conj(psi)).real
if 0 in self.symmetries:
# (x,y) -> (-x,y)
ldos[1:] += ldos[:0:-1].copy()
ldos[1:] *= 0.5
if 1 in self.symmetries:
# (x,y) -> (x,-y)
ldos[:, 1:] += ldos[:, :0:-1].copy()
ldos[:, 1:] *= 0.5
if 2 in self.symmetries:
# (x,y) -> (y,x)
ldos += ldos.transpose((1, 0, 2)).copy()
ldos *= 0.5
self.ldos = ldos
def write(self, filename):
"""Write local density of states to JSON file."""
write_json(filename, (self.ldos, self.bias, self.cell))
def get_averaged_current(self, bias, z):
"""Calculate avarage current at height z (in Angstrom).
Use this to get an idea of what current to use when scanning."""
self.calculate_ldos(bias)
nz = self.ldos.shape[2]
# Find grid point:
n = z / self.cell[2, 2] * nz
dn = n - np.floor(n)
n = int(n) % nz
# Average and do linear interpolation:
return ((1 - dn) * self.ldos[:, :, n].mean() +
dn * self.ldos[:, :, (n + 1) % nz].mean())
def scan(self, bias, current, z0=None, repeat=(1, 1)):
"""Constant current 2-d scan.
Returns three 2-d arrays (x, y, z) containing x-coordinates,
y-coordinates and heights. These three arrays can be passed to
matplotlibs contourf() function like this:
>>> import matplotlib.pyplot as plt
>>> plt.contourf(x, y, z)
>>> plt.show()
"""
self.calculate_ldos(bias)
L = self.cell[2, 2]
nz = self.ldos.shape[2]
h = L / nz
ldos = self.ldos.reshape((-1, nz))
heights = np.empty(ldos.shape[0])
for i, a in enumerate(ldos):
heights[i] = find_height(a, current, h, z0)
s0 = heights.shape = self.ldos.shape[:2]
heights = np.tile(heights, repeat)
s = heights.shape
ij = np.indices(s, dtype=float).reshape((2, -1)).T
x, y = np.dot(ij / s0, self.cell[:2, :2]).T.reshape((2,) + s)
return x, y, heights
def scan2(self, bias, z, repeat=(1, 1)):
"""Constant height 2-d scan.
Returns three 2-d arrays (x, y, I) containing x-coordinates,
y-coordinates and currents. These three arrays can be passed to
matplotlibs contourf() function like this:
>>> import matplotlib.pyplot as plt
>>> plt.contourf(x, y, I)
>>> plt.show()
"""
self.calculate_ldos(bias)
nz = self.ldos.shape[2]
ldos = self.ldos.reshape((-1, nz))
current = np.empty(ldos.shape[0])
zp = z / self.cell[2, 2] * nz
zp = int(zp) % nz
for i, a in enumerate(ldos):
current[i] = self.find_current(a, zp)
s0 = current.shape = self.ldos.shape[:2]
current = np.tile(current, repeat)
s = current.shape
ij = np.indices(s, dtype=float).reshape((2, -1)).T
x, y = np.dot(ij / s0, self.cell[:2, :2]).T.reshape((2,) + s)
# Returing scan with axes in Angstrom.
return x, y, current
def linescan(self, bias, current, p1, p2, npoints=50, z0=None):
"""Constant current line scan.
Example::
stm = STM(...)
z = ... # tip position
c = stm.get_averaged_current(-1.0, z)
stm.linescan(-1.0, c, (1.2, 0.0), (1.2, 3.0))
"""
heights = self.scan(bias, current, z0)[2]
p1 = np.asarray(p1, float)
p2 = np.asarray(p2, float)
d = p2 - p1
s = np.dot(d, d)**0.5
cell = self.cell[:2, :2]
shape = np.array(heights.shape, float)
M = np.linalg.inv(cell)
line = np.empty(npoints)
for i in range(npoints):
p = p1 + i * d / (npoints - 1)
q = np.dot(p, M) * shape
line[i] = interpolate(q, heights)
return np.linspace(0, s, npoints), line
def pointcurrent(self, bias, x, y, z):
"""Current for a single x, y, z position for a given bias."""
self.calculate_ldos(bias)
nx = self.ldos.shape[0]
ny = self.ldos.shape[1]
nz = self.ldos.shape[2]
# Find grid point:
xp = x / np.linalg.norm(self.cell[0]) * nx
dx = xp - np.floor(xp)
xp = int(xp) % nx
yp = y / np.linalg.norm(self.cell[1]) * ny
dy = yp - np.floor(yp)
yp = int(yp) % ny
zp = z / np.linalg.norm(self.cell[2]) * nz
dz = zp - np.floor(zp)
zp = int(zp) % nz
# 3D interpolation of the LDOS at point (x,y,z) at given bias.
xyzldos = (((1 - dx) + (1 - dy) + (1 - dz)) * self.ldos[xp, yp, zp] +
dx * self.ldos[(xp + 1) % nx, yp, zp] +
dy * self.ldos[xp, (yp + 1) % ny, zp] +
dz * self.ldos[xp, yp, (zp + 1) % nz])
return dos2current(bias, xyzldos)
def sts(self, x, y, z, bias0, bias1, biasstep):
"""Returns the dI/dV curve for position x, y at height z (in Angstrom),
for bias from bias0 to bias1 with step biasstep."""
biases = np.arange(bias0, bias1 + biasstep, biasstep)
current = np.zeros(biases.shape)
for b in np.arange(len(biases)):
print(b, biases[b])
current[b] = self.pointcurrent(biases[b], x, y, z)
dIdV = np.gradient(current, biasstep)
return biases, current, dIdV
def find_current(self, ldos, z):
""" Finds current for given LDOS at height z."""
nz = self.ldos.shape[2]
zp = z / self.cell[2, 2] * nz
dz = zp - np.floor(zp)
zp = int(zp) % nz
ldosz = (1 - dz) * ldos[zp] + dz * ldos[(zp + 1) % nz]
return dos2current(self.bias, ldosz)
def dos2current(bias, dos):
# Borrowed from gpaw/analyse/simple_stm.py:
# The connection between density n and current I
# n [e/Angstrom^3] = 0.0002 sqrt(I [nA])
# as given in Hofer et al., RevModPhys 75 (2003) 1287
return 5000. * dos**2 * (1 if bias > 0 else -1)
def interpolate(q, heights):
qi = q.astype(int)
f = q - qi
g = 1 - f
qi %= heights.shape
n0, m0 = qi
n1, m1 = (qi + 1) % heights.shape
z = (g[0] * g[1] * heights[n0, m0] +
f[0] * g[1] * heights[n1, m0] +
g[0] * f[1] * heights[n0, m1] +
f[0] * f[1] * heights[n1, m1])
return z
def find_height(ldos, current, h, z0=None):
if z0 is None:
n = len(ldos) - 2
else:
n = int(z0 / h)
while n >= 0:
if ldos[n] > current:
break
n -= 1
else:
return 0.0
c2, c1 = ldos[n:n + 2]
return (n + 1 - (current - c1) / (c2 - c1)) * h
def delta(biases, bias, width):
"""Return a delta-function centered at 'bias'"""
x = -((biases - bias) / width)**2
return np.exp(x) / (np.sqrt(np.pi) * width)
|