File: data.py

package info (click to toggle)
python-ase 3.26.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,484 kB
  • sloc: python: 148,112; xml: 2,728; makefile: 110; javascript: 47
file content (462 lines) | stat: -rw-r--r-- 17,341 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
# fmt: off

"""
    Objects which handle all communication with the SQLite database.
"""
import os

import ase.db
from ase import Atoms
from ase.ga import get_raw_score, set_neighbor_list, set_parametrization


def split_description(desc):
    """ Utility method for string splitting. """
    d = desc.split(':')
    assert len(d) == 2, desc
    return d[0], d[1]


def test_raw_score(atoms):
    """Test that raw_score can be extracted."""
    err_msg = "raw_score not put in atoms.info['key_value_pairs']"
    assert 'raw_score' in atoms.info['key_value_pairs'], err_msg


class DataConnection:
    """Class that handles all database communication.

    All data communication is collected in this class in order to
    make a decoupling of the data representation and the GA method.

    A new candidate must be added with one of the functions
    add_unrelaxed_candidate or add_relaxed_candidate this will correctly
    initialize a configuration id used to keep track of candidates in the
    database.
    After one of the add_*_candidate functions have been used, if the candidate
    is further modified or relaxed the functions add_unrelaxed_step or
    add_relaxed_step must be used. This way the configuration id carries
    through correctly.

    Parameters:

    db_file_name: Path to the ase.db data file.
    """

    def __init__(self, db_file_name):
        self.db_file_name = db_file_name
        if not os.path.isfile(self.db_file_name):
            raise OSError(f'DB file {self.db_file_name} not found')
        self.c = ase.db.connect(self.db_file_name)
        self.already_returned = set()

    def get_number_of_unrelaxed_candidates(self):
        """ Returns the number of candidates not yet queued or relaxed. """
        return len(self.__get_ids_of_all_unrelaxed_candidates__())

    def get_an_unrelaxed_candidate(self):
        """ Returns a candidate ready for relaxation. """
        to_get = self.__get_ids_of_all_unrelaxed_candidates__()
        if len(to_get) == 0:
            raise ValueError('No unrelaxed candidate to return')

        a = self.__get_latest_traj_for_confid__(to_get[0])
        a.info['confid'] = to_get[0]
        if 'data' not in a.info:
            a.info['data'] = {}
        return a

    def get_all_unrelaxed_candidates(self):
        """Return all unrelaxed candidates,
        useful if they can all be evaluated quickly."""
        to_get = self.__get_ids_of_all_unrelaxed_candidates__()
        if len(to_get) == 0:
            return []
        res = []
        for confid in to_get:
            a = self.__get_latest_traj_for_confid__(confid)
            a.info['confid'] = confid
            if 'data' not in a.info:
                a.info['data'] = {}
            res.append(a)
        return res

    def __get_ids_of_all_unrelaxed_candidates__(self):
        """ Helper method used by the two above methods. """

        all_unrelaxed_ids = {t.gaid for t in self.c.select(relaxed=0)}
        all_relaxed_ids = {t.gaid for t in self.c.select(relaxed=1)}
        all_queued_ids = {t.gaid for t in self.c.select(queued=1)}

        actually_unrelaxed = [gaid for gaid in all_unrelaxed_ids
                              if (gaid not in all_relaxed_ids and
                                  gaid not in all_queued_ids)]

        return actually_unrelaxed

    def __get_latest_traj_for_confid__(self, confid):
        """ Method for obtaining the latest traj
            file for a given configuration.
            There can be several traj files for
            one configuration if it has undergone
            several changes (mutations, pairings, etc.)."""
        allcands = list(self.c.select(gaid=confid))
        allcands.sort(key=lambda x: x.mtime)
        # return self.get_atoms(all[-1].gaid)
        return self.get_atoms(allcands[-1].id)

    def mark_as_queued(self, a):
        """ Marks a configuration as queued for relaxation. """
        gaid = a.info['confid']
        self.c.write(None, gaid=gaid, queued=1,
                     key_value_pairs=a.info['key_value_pairs'])

#         if not np.array_equal(a.numbers, self.atom_numbers):
#             raise ValueError('Wrong stoichiometry')
#         self.c.write(a, gaid=gaid, queued=1)

    def add_relaxed_step(self, a, find_neighbors=None,
                         perform_parametrization=None):
        """After a candidate is relaxed it must be marked
        as such. Use this function if the candidate has already been in the
        database in an unrelaxed version, i.e. add_unrelaxed_candidate has
        been used.

        Neighbor list and parametrization parameters to screen
        candidates before relaxation can be added. Default is not to use.
        """
        # test that raw_score can be extracted
        err_msg = "raw_score not put in atoms.info['key_value_pairs']"
        assert 'raw_score' in a.info['key_value_pairs'], err_msg

        #  confid has already been set in add_unrelaxed_candidate
        gaid = a.info['confid']

        if 'generation' not in a.info['key_value_pairs']:
            g = self.get_generation_number()
            a.info['key_value_pairs']['generation'] = g

        if find_neighbors is not None:
            set_neighbor_list(a, find_neighbors(a))
        if perform_parametrization is not None:
            set_parametrization(a, perform_parametrization(a))

        relax_id = self.c.write(a, relaxed=1, gaid=gaid,
                                key_value_pairs=a.info['key_value_pairs'],
                                data=a.info['data'])
        a.info['relax_id'] = relax_id

    def add_relaxed_candidate(self, a, find_neighbors=None,
                              perform_parametrization=None):
        """After a candidate is relaxed it must be marked
        as such. Use this function if the candidate has *not* been in the
        database in an unrelaxed version, i.e. add_unrelaxed_candidate has
        *not* been used.

        Neighbor list and parametrization parameters to screen
        candidates before relaxation can be added. Default is not to use.
        """
        test_raw_score(a)

        if 'generation' not in a.info['key_value_pairs']:
            g = self.get_generation_number()
            a.info['key_value_pairs']['generation'] = g

        if find_neighbors is not None:
            set_neighbor_list(a, find_neighbors(a))
        if perform_parametrization is not None:
            set_parametrization(a, perform_parametrization(a))

        relax_id = self.c.write(a, relaxed=1,
                                key_value_pairs=a.info['key_value_pairs'],
                                data=a.info['data'])
        self.c.update(relax_id, gaid=relax_id)
        a.info['confid'] = relax_id
        a.info['relax_id'] = relax_id

    def add_more_relaxed_steps(self, a_list):
        # This function will be removed soon as the function name indicates
        # that unrelaxed candidates are added beforehand
        print('Please use add_more_relaxed_candidates instead')
        self.add_more_relaxed_candidates(a_list)

    def add_more_relaxed_candidates(self, a_list):
        """Add more relaxed candidates quickly"""
        for a in a_list:
            try:
                a.info['key_value_pairs']['raw_score']
            except KeyError:
                print("raw_score not put in atoms.info['key_value_pairs']")

        g = self.get_generation_number()

        # Insert gaid by getting the next available id and assuming that the
        # entire a_list will be written without interuption
        next_id = self.get_next_id()
        with self.c as con:
            for j, a in enumerate(a_list):
                if 'generation' not in a.info['key_value_pairs']:
                    a.info['key_value_pairs']['generation'] = g

                gaid = next_id + j
                relax_id = con.write(a, relaxed=1, gaid=gaid,
                                     key_value_pairs=a.info['key_value_pairs'],
                                     data=a.info['data'])
                assert gaid == relax_id
                a.info['confid'] = relax_id
                a.info['relax_id'] = relax_id

    def get_next_id(self):
        """Get the id of the next candidate to be added to the database.
        This is a hacky way of obtaining the id and it only works on a
        sqlite database.
        """
        con = self.c._connect()
        last_id = self.c.get_last_id(con.cursor())
        con.close()
        return last_id + 1

    def get_largest_in_db(self, var):
        return next(self.c.select(sort=f'-{var}')).get(var)

    def add_unrelaxed_candidate(self, candidate, description):
        """ Adds a new candidate which needs to be relaxed. """
        t, desc = split_description(description)
        kwargs = {'relaxed': 0,
                  'extinct': 0,
                  t: 1,
                  'description': desc}

        if 'generation' not in candidate.info['key_value_pairs']:
            kwargs.update({'generation': self.get_generation_number()})

        gaid = self.c.write(candidate,
                            key_value_pairs=candidate.info['key_value_pairs'],
                            data=candidate.info['data'],
                            **kwargs)
        self.c.update(gaid, gaid=gaid)
        candidate.info['confid'] = gaid

    def add_unrelaxed_step(self, candidate, description):
        """ Add a change to a candidate without it having been relaxed.
            This method is typically used when a
            candidate has been mutated. """

        # confid has already been set by add_unrelaxed_candidate
        gaid = candidate.info['confid']

        t, desc = split_description(description)
        kwargs = {'relaxed': 0,
                  'extinct': 0,
                  t: 1,
                  'description': desc, 'gaid': gaid}

        self.c.write(candidate,
                     key_value_pairs=candidate.info['key_value_pairs'],
                     data=candidate.info['data'],
                     **kwargs)

    def get_number_of_atoms_to_optimize(self):
        """ Get the number of atoms being optimized. """
        v = self.c.get(simulation_cell=True)
        return len(v.data.stoichiometry)

    def get_atom_numbers_to_optimize(self):
        """ Get the list of atom numbers being optimized. """
        v = self.c.get(simulation_cell=True)
        return v.data.stoichiometry

    def get_slab(self):
        """ Get the super cell, including stationary atoms, in which
            the structure is being optimized. """
        return self.c.get_atoms(simulation_cell=True)

    def get_participation_in_pairing(self):
        """ Get information about how many direct
            offsprings each candidate has, and which specific
            pairings have been made. This information is used
            for the extended fitness calculation described in
            L.B. Vilhelmsen et al., JACS, 2012, 134 (30), pp 12807-12816
        """
        entries = self.c.select(pairing=1)

        frequency = {}
        pairs = []
        for e in entries:
            c1, c2 = e.data['parents']
            pairs.append(tuple(sorted([c1, c2])))
            if c1 not in frequency.keys():
                frequency[c1] = 0
            frequency[c1] += 1
            if c2 not in frequency.keys():
                frequency[c2] = 0
            frequency[c2] += 1
        return (frequency, pairs)

    def get_all_relaxed_candidates(self, only_new=False, use_extinct=False):
        """ Returns all candidates that have been relaxed.

        Parameters:

        only_new: boolean (optional)
            Used to specify only to get candidates relaxed since last
            time this function was invoked. Default: False.

        use_extinct: boolean (optional)
            Set to True if the extinct key (and mass extinction) is going
            to be used. Default: False."""

        if use_extinct:
            entries = self.c.select('relaxed=1,extinct=0',
                                    sort='-raw_score')
        else:
            entries = self.c.select('relaxed=1', sort='-raw_score')

        trajs = []
        for v in entries:
            if only_new and v.gaid in self.already_returned:
                continue
            t = self.get_atoms(id=v.id)
            t.info['confid'] = v.gaid
            t.info['relax_id'] = v.id
            trajs.append(t)
            self.already_returned.add(v.gaid)
        return trajs

    def get_all_relaxed_candidates_after_generation(self, gen):
        """ Returns all candidates that have been relaxed up to
            and including the specified generation
        """
        q = 'relaxed=1,extinct=0,generation<={0}'
        entries = self.c.select(q.format(gen))

        trajs = []
        for v in entries:
            t = self.get_atoms(id=v.id)
            t.info['confid'] = v.gaid
            t.info['relax_id'] = v.id
            trajs.append(t)
        trajs.sort(key=get_raw_score,
                   reverse=True)
        return trajs

    def get_all_candidates_in_queue(self):
        """ Returns all structures that are queued, but have not yet
            been relaxed. """
        all_queued_ids = [t.gaid for t in self.c.select(queued=1)]
        all_relaxed_ids = [t.gaid for t in self.c.select(relaxed=1)]

        in_queue = [qid for qid in all_queued_ids
                    if qid not in all_relaxed_ids]
        return in_queue

    def remove_from_queue(self, confid):
        """ Removes the candidate confid from the queue. """

        queued_ids = self.c.select(queued=1, gaid=confid)
        ids = [q.id for q in queued_ids]
        self.c.delete(ids)

    def get_generation_number(self, size=None):
        """ Returns the current generation number, by looking
            at the number of relaxed individuals and comparing
            this number to the supplied size or population size.

            If all individuals in generation 3 has been relaxed
            it will return 4 if not all in generation 4 has been
            relaxed.
        """
        if size is None:
            size = self.get_param('population_size')
        if size is None:
            # size = len(list(self.c.select(relaxed=0,generation=0)))
            return 0
        lg = size
        g = 0
        all_candidates = list(self.c.select(relaxed=1))
        while lg > 0:
            lg = len([c for c in all_candidates if c.generation == g])
            if lg >= size:
                g += 1
            else:
                return g

    def get_atoms(self, id, add_info=True):
        """Return the atoms object with the specified id"""
        a = self.c.get_atoms(id, add_additional_information=add_info)
        return a

    def get_param(self, parameter):
        """ Get a parameter saved when creating the database. """
        if self.c.get(1).get('data'):
            return self.c.get(1).data.get(parameter, None)
        return None

    def remove_old_queued(self):
        pass
        # gen = self.get_generation_number()
        # self.c.select()

    def is_duplicate(self, **kwargs):
        """Check if the key-value pair is already present in the database"""
        return len(list(self.c.select(**kwargs))) > 0

    def kill_candidate(self, confid):
        """Sets extinct=1 in the key_value_pairs of the candidate
        with gaid=confid. This could be used in the
        mass extinction operator."""
        for dct in self.c.select(gaid=confid):
            self.c.update(dct.id, extinct=1)


class PrepareDB:
    """ Class used to initialize a database.

        This class is used once to setup the database and create
        working directories.

        Parameters:

        db_file_name: Database file to use

    """

    def __init__(self, db_file_name, simulation_cell=None, **kwargs):
        if os.path.exists(db_file_name):
            raise OSError('DB file {} already exists'
                          .format(os.path.abspath(db_file_name)))
        self.db_file_name = db_file_name
        if simulation_cell is None:
            simulation_cell = Atoms()

        self.c = ase.db.connect(self.db_file_name)

        # Just put everything in data,
        # because we don't want to search the db for it.
        data = dict(kwargs)

        self.c.write(simulation_cell, data=data,
                     simulation_cell=True)

    def add_unrelaxed_candidate(self, candidate, **kwargs):
        """ Add an unrelaxed starting candidate. """
        gaid = self.c.write(candidate, origin='StartingCandidateUnrelaxed',
                            relaxed=0, generation=0, extinct=0, **kwargs)
        self.c.update(gaid, gaid=gaid)
        candidate.info['confid'] = gaid

    def add_relaxed_candidate(self, candidate, **kwargs):
        """ Add a relaxed starting candidate. """
        test_raw_score(candidate)

        if 'data' in candidate.info:
            data = candidate.info['data']
        else:
            data = {}

        gaid = self.c.write(candidate, origin='StartingCandidateRelaxed',
                            relaxed=1, generation=0, extinct=0,
                            key_value_pairs=candidate.info['key_value_pairs'],
                            data=data, **kwargs)
        self.c.update(gaid, gaid=gaid)
        candidate.info['confid'] = gaid