1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
|
# fmt: off
from itertools import combinations_with_replacement
from math import erf
import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial.distance import cdist
from ase.neighborlist import NeighborList
from ase.utils import pbc2pbc
class OFPComparator:
"""Implementation of comparison using Oganov's fingerprint (OFP)
functions, based on:
* :doi:`Oganov, Valle, J. Chem. Phys. 130, 104504 (2009)
<10.1063/1.3079326>`
* :doi:`Lyakhov, Oganov, Valle, Comp. Phys. Comm. 181 (2010) 1623-1632
<10.1016/j.cpc.2010.06.007>`
Parameters:
n_top: int or None
The number of atoms to optimize (None = include all).
dE: float
Energy difference above which two structures are
automatically considered to be different. (Default 1 eV)
cos_dist_max: float
Maximal cosine distance between two structures in
order to be still considered the same structure. Default 5e-3
rcut: float
Cutoff radius in Angstrom for the fingerprints.
(Default 20 Angstrom)
binwidth: float
Width in Angstrom of the bins over which the fingerprints
are discretized. (Default 0.05 Angstrom)
pbc: list of three booleans or None
Specifies whether to apply periodic boundary conditions
along each of the three unit cell vectors when calculating
the fingerprint. The default (None) is to apply PBCs in all
3 directions.
Note: for isolated systems (pbc = [False, False, False]),
the pair correlation function itself is always short-ranged
(decays to zero beyond a certain radius), so unity is not
subtracted for calculating the fingerprint. Also the
volume normalization disappears.
maxdims: list of three floats or None
If PBCs in only 1 or 2 dimensions are specified, the
maximal thicknesses along the non-periodic directions can
be specified here (the values given for the periodic
directions will not be used). If set to None (the
default), the length of the cell vector along the
non-periodic direction is used.
Note: in this implementation, the cell vectors are
assumed to be orthogonal.
sigma: float
Standard deviation of the gaussian smearing to be applied
in the calculation of the fingerprints (in
Angstrom). Default 0.02 Angstrom.
nsigma: int
Distance (as the number of standard deviations sigma) at
which the gaussian smearing is cut off (i.e. no smearing
beyond that distance). (Default 4)
recalculate: boolean
If True, ignores the fingerprints stored in
atoms.info and recalculates them. (Default False)
"""
def __init__(self, n_top=None, dE=1.0, cos_dist_max=5e-3, rcut=20.,
binwidth=0.05, sigma=0.02, nsigma=4, pbc=True,
maxdims=None, recalculate=False):
self.n_top = n_top or 0
self.dE = dE
self.cos_dist_max = cos_dist_max
self.rcut = rcut
self.binwidth = binwidth
self.pbc = pbc2pbc(pbc)
if maxdims is None:
self.maxdims = [None] * 3
else:
self.maxdims = maxdims
self.sigma = sigma
self.nsigma = nsigma
self.recalculate = recalculate
self.dimensions = self.pbc.sum()
if self.dimensions == 1 or self.dimensions == 2:
for direction in range(3):
if not self.pbc[direction]:
if self.maxdims[direction] is not None:
if self.maxdims[direction] <= 0:
e = '''If a max thickness is specificed in maxdims
for a non-periodic direction, it has to be
strictly positive.'''
raise ValueError(e)
def looks_like(self, a1, a2):
""" Return if structure a1 or a2 are similar or not. """
if len(a1) != len(a2):
raise Exception('The two configurations are not the same size.')
# first we check the energy criteria
if a1.calc is not None and a2.calc is not None:
dE = abs(a1.get_potential_energy() - a2.get_potential_energy())
if dE >= self.dE:
return False
# then we check the structure
cos_dist = self._compare_structure(a1, a2)
verdict = cos_dist < self.cos_dist_max
return verdict
def _json_encode(self, fingerprints, typedic):
""" json does not accept tuples nor integers as dict keys,
so in order to write the fingerprints to atoms.info, we need
to convert them to strings """
fingerprints_encoded = {}
for key, val in fingerprints.items():
try:
newkey = "_".join(map(str, list(key)))
except TypeError:
newkey = str(key)
if isinstance(val, dict):
fingerprints_encoded[newkey] = {
str(key2): val2 for key2, val2 in val.items()}
else:
fingerprints_encoded[newkey] = val
typedic_encoded = {}
for key, val in typedic.items():
newkey = str(key)
typedic_encoded[newkey] = val
return [fingerprints_encoded, typedic_encoded]
def _json_decode(self, fingerprints, typedic):
""" This is the reverse operation of _json_encode """
fingerprints_decoded = {}
for key, val in fingerprints.items():
newkey = list(map(int, key.split("_")))
if len(newkey) > 1:
newkey = tuple(newkey)
else:
newkey = newkey[0]
if isinstance(val, dict):
fingerprints_decoded[newkey] = {
int(key2): np.array(val2) for key2, val2 in val.items()
}
else:
fingerprints_decoded[newkey] = np.array(val)
typedic_decoded = {}
for key, val in typedic.items():
newkey = int(key)
typedic_decoded[newkey] = val
return [fingerprints_decoded, typedic_decoded]
def _compare_structure(self, a1, a2):
""" Returns the cosine distance between the two structures,
using their fingerprints. """
if len(a1) != len(a2):
raise Exception('The two configurations are not the same size.')
a1top = a1[-self.n_top:]
a2top = a2[-self.n_top:]
if 'fingerprints' in a1.info and not self.recalculate:
fp1, typedic1 = a1.info['fingerprints']
fp1, typedic1 = self._json_decode(fp1, typedic1)
else:
fp1, typedic1 = self._take_fingerprints(a1top)
a1.info['fingerprints'] = self._json_encode(fp1, typedic1)
if 'fingerprints' in a2.info and not self.recalculate:
fp2, typedic2 = a2.info['fingerprints']
fp2, typedic2 = self._json_decode(fp2, typedic2)
else:
fp2, typedic2 = self._take_fingerprints(a2top)
a2.info['fingerprints'] = self._json_encode(fp2, typedic2)
if sorted(fp1) != sorted(fp2):
raise AssertionError('The two structures have fingerprints '
'with different compounds.')
for key in typedic1:
if not np.array_equal(typedic1[key], typedic2[key]):
raise AssertionError('The two structures have a different '
'stoichiometry or ordering!')
cos_dist = self._cosine_distance(fp1, fp2, typedic1)
return cos_dist
def _get_volume(self, a):
''' Calculates the normalizing value, and other parameters
(pmin,pmax,qmin,qmax) that are used for surface area calculation
in the case of 1 or 2-D periodicity.'''
cell = a.get_cell()
scalpos = a.get_scaled_positions()
# defaults:
volume = 1.
pmin, pmax, qmin, qmax = [0.] * 4
if self.dimensions == 1 or self.dimensions == 2:
for direction in range(3):
if not self.pbc[direction]:
if self.maxdims[direction] is None:
maxdim = np.linalg.norm(cell[direction, :])
self.maxdims[direction] = maxdim
pbc_dirs = [i for i in range(3) if self.pbc[i]]
non_pbc_dirs = [i for i in range(3) if not self.pbc[i]]
if self.dimensions == 3:
volume = abs(np.dot(np.cross(cell[0, :], cell[1, :]), cell[2, :]))
elif self.dimensions == 2:
non_pbc_dir = non_pbc_dirs[0]
a = np.cross(cell[pbc_dirs[0], :], cell[pbc_dirs[1], :])
b = self.maxdims[non_pbc_dir]
b /= np.linalg.norm(cell[non_pbc_dir, :])
volume = np.abs(np.dot(a, b * cell[non_pbc_dir, :]))
maxpos = np.max(scalpos[:, non_pbc_dir])
minpos = np.min(scalpos[:, non_pbc_dir])
pwidth = maxpos - minpos
pmargin = 0.5 * (b - pwidth)
# note: here is a place where we assume that the
# non-periodic direction is orthogonal to the periodic ones:
pmin = np.min(scalpos[:, non_pbc_dir]) - pmargin
pmin *= np.linalg.norm(cell[non_pbc_dir, :])
pmax = np.max(scalpos[:, non_pbc_dir]) + pmargin
pmax *= np.linalg.norm(cell[non_pbc_dir, :])
elif self.dimensions == 1:
pbc_dir = pbc_dirs[0]
v0 = cell[non_pbc_dirs[0], :]
b0 = self.maxdims[non_pbc_dirs[0]]
b0 /= np.linalg.norm(cell[non_pbc_dirs[0], :])
v1 = cell[non_pbc_dirs[1], :]
b1 = self.maxdims[non_pbc_dirs[1]]
b1 /= np.linalg.norm(cell[non_pbc_dirs[1], :])
volume = np.abs(np.dot(np.cross(b0 * v0, b1 * v1),
cell[pbc_dir, :]))
# note: here is a place where we assume that the
# non-periodic direction is orthogonal to the periodic ones:
maxpos = np.max(scalpos[:, non_pbc_dirs[0]])
minpos = np.min(scalpos[:, non_pbc_dirs[0]])
pwidth = maxpos - minpos
pmargin = 0.5 * (b0 - pwidth)
pmin = np.min(scalpos[:, non_pbc_dirs[0]]) - pmargin
pmin *= np.linalg.norm(cell[non_pbc_dirs[0], :])
pmax = np.max(scalpos[:, non_pbc_dirs[0]]) + pmargin
pmax *= np.linalg.norm(cell[non_pbc_dirs[0], :])
maxpos = np.max(scalpos[:, non_pbc_dirs[1]])
minpos = np.min(scalpos[:, non_pbc_dirs[1]])
qwidth = maxpos - minpos
qmargin = 0.5 * (b1 - qwidth)
qmin = np.min(scalpos[:, non_pbc_dirs[1]]) - qmargin
qmin *= np.linalg.norm(cell[non_pbc_dirs[1], :])
qmax = np.max(scalpos[:, non_pbc_dirs[1]]) + qmargin
qmax *= np.linalg.norm(cell[non_pbc_dirs[1], :])
elif self.dimensions == 0:
volume = 1.
return [volume, pmin, pmax, qmin, qmax]
def _take_fingerprints(self, atoms, individual=False):
""" Returns a [fingerprints,typedic] list, where fingerprints
is a dictionary with the fingerprints, and typedic is a
dictionary with the list of atom indices for each element
(or "type") in the atoms object.
The keys in the fingerprints dictionary are the (A,B) tuples,
which are the different element-element combinations in the
atoms object (A and B are the atomic numbers).
When A != B, the (A,B) tuple is sorted (A < B).
If individual=True, a dict is returned, where each atom index
has an {atomic_number:fingerprint} dict as value.
If individual=False, the fingerprints from atoms of the same
atomic number are added together."""
pos = atoms.get_positions()
num = atoms.get_atomic_numbers()
cell = atoms.get_cell()
unique_types = np.unique(num)
posdic = {}
typedic = {}
for t in unique_types:
tlist = [i for i, atom in enumerate(atoms) if atom.number == t]
typedic[t] = tlist
posdic[t] = pos[tlist]
# determining the volume normalization and other parameters
volume, pmin, pmax, qmin, qmax = self._get_volume(atoms)
# functions for calculating the surface area
non_pbc_dirs = [i for i in range(3) if not self.pbc[i]]
def surface_area_0d(r):
return 4 * np.pi * (r**2)
def surface_area_1d(r, pos):
q0 = pos[non_pbc_dirs[1]]
phi1 = np.lib.scimath.arccos((qmax - q0) / r).real
phi2 = np.pi - np.lib.scimath.arccos((qmin - q0) / r).real
factor = 1 - (phi1 + phi2) / np.pi
return surface_area_2d(r, pos) * factor
def surface_area_2d(r, pos):
p0 = pos[non_pbc_dirs[0]]
area = np.minimum(pmax - p0, r) + np.minimum(p0 - pmin, r)
area *= 2 * np.pi * r
return area
def surface_area_3d(r):
return 4 * np.pi * (r**2)
# build neighborlist
# this is computationally the most intensive part
a = atoms.copy()
a.set_pbc(self.pbc)
nl = NeighborList([self.rcut / 2.] * len(a), skin=0.,
self_interaction=False, bothways=True)
nl.update(a)
# parameters for the binning:
m = int(np.ceil(self.nsigma * self.sigma / self.binwidth))
x = 0.25 * np.sqrt(2) * self.binwidth * (2 * m + 1) * 1. / self.sigma
smearing_norm = erf(x)
nbins = int(np.ceil(self.rcut * 1. / self.binwidth))
bindist = self.binwidth * np.arange(1, nbins + 1)
def take_individual_rdf(index, unique_type):
# Computes the radial distribution function of atoms
# of type unique_type around the atom with index "index".
rdf = np.zeros(nbins)
if self.dimensions == 3:
weights = 1. / surface_area_3d(bindist)
elif self.dimensions == 2:
weights = 1. / surface_area_2d(bindist, pos[index])
elif self.dimensions == 1:
weights = 1. / surface_area_1d(bindist, pos[index])
elif self.dimensions == 0:
weights = 1. / surface_area_0d(bindist)
weights /= self.binwidth
indices, offsets = nl.get_neighbors(index)
valid = np.where(num[indices] == unique_type)
p = pos[indices[valid]] + np.dot(offsets[valid], cell)
r = cdist(p, [pos[index]])
bins = np.floor(r / self.binwidth)
for i in range(-m, m + 1):
newbins = bins + i
valid = np.where((newbins >= 0) & (newbins < nbins))
valid_bins = newbins[valid].astype(int)
values = weights[valid_bins]
c = 0.25 * np.sqrt(2) * self.binwidth * 1. / self.sigma
values *= 0.5 * erf(c * (2 * i + 1)) - \
0.5 * erf(c * (2 * i - 1))
values /= smearing_norm
for j, valid_bin in enumerate(valid_bins):
rdf[valid_bin] += values[j]
rdf /= len(typedic[unique_type]) * 1. / volume
return rdf
fingerprints = {}
if individual:
for i in range(len(atoms)):
fingerprints[i] = {}
for unique_type in unique_types:
fingerprint = take_individual_rdf(i, unique_type)
if self.dimensions > 0:
fingerprint -= 1
fingerprints[i][unique_type] = fingerprint
else:
for t1, t2 in combinations_with_replacement(unique_types, r=2):
key = (t1, t2)
fingerprint = np.zeros(nbins)
for i in typedic[t1]:
fingerprint += take_individual_rdf(i, t2)
fingerprint /= len(typedic[t1])
if self.dimensions > 0:
fingerprint -= 1
fingerprints[key] = fingerprint
return [fingerprints, typedic]
def _calculate_local_orders(self, individual_fingerprints, typedic,
volume):
""" Returns a list with the local order for every atom,
using the definition of local order from
Lyakhov, Oganov, Valle, Comp. Phys. Comm. 181 (2010) 1623-1632
:doi:`10.1016/j.cpc.2010.06.007`"""
# total number of atoms:
n_tot = sum(len(typedic[key]) for key in typedic)
inv_n_tot = 1. / n_tot
local_orders = []
for fingerprints in individual_fingerprints.values():
local_order = 0
for unique_type, fingerprint in fingerprints.items():
term = np.linalg.norm(fingerprint)**2
term *= self.binwidth
term *= (volume * inv_n_tot)**(-1 / 3)
term *= len(typedic[unique_type]) * inv_n_tot
local_order += term
local_orders.append(np.sqrt(local_order))
return local_orders
def get_local_orders(self, a):
""" Returns the local orders of all the atoms."""
a_top = a[-self.n_top:]
key = 'individual_fingerprints'
if key in a.info and not self.recalculate:
fp, typedic = self._json_decode(*a.info[key])
else:
fp, typedic = self._take_fingerprints(a_top, individual=True)
a.info[key] = self._json_encode(fp, typedic)
volume, _pmin, _pmax, _qmin, _qmax = self._get_volume(a_top)
return self._calculate_local_orders(fp, typedic, volume)
def _cosine_distance(self, fp1, fp2, typedic):
""" Returns the cosine distance from two fingerprints.
It also needs information about the number of atoms from
each element, which is included in "typedic"."""
keys = sorted(fp1)
# calculating the weights:
w = {}
wtot = 0
for key in keys:
weight = len(typedic[key[0]]) * len(typedic[key[1]])
wtot += weight
w[key] = weight
for key in keys:
w[key] *= 1. / wtot
# calculating the fingerprint norms:
norm1 = 0
norm2 = 0
for key in keys:
norm1 += (np.linalg.norm(fp1[key])**2) * w[key]
norm2 += (np.linalg.norm(fp2[key])**2) * w[key]
norm1 = np.sqrt(norm1)
norm2 = np.sqrt(norm2)
# calculating the distance:
distance = 0
for key in keys:
distance += np.sum(fp1[key] * fp2[key]) * w[key] / (norm1 * norm2)
distance = 0.5 * (1 - distance)
return distance
def plot_fingerprints(self, a, prefix=''):
""" Function for quickly plotting all the fingerprints.
Prefix = a prefix you want to give to the resulting PNG file."""
if 'fingerprints' in a.info and not self.recalculate:
fp, typedic = a.info['fingerprints']
fp, typedic = self._json_decode(fp, typedic)
else:
a_top = a[-self.n_top:]
fp, typedic = self._take_fingerprints(a_top)
a.info['fingerprints'] = self._json_encode(fp, typedic)
npts = int(np.ceil(self.rcut * 1. / self.binwidth))
x = np.linspace(0, self.rcut, npts, endpoint=False)
for key, val in fp.items():
plt.plot(x, val)
suffix = f"_fp_{key[0]}_{key[1]}.png"
plt.savefig(prefix + suffix)
plt.clf()
def plot_individual_fingerprints(self, a, prefix=''):
""" Function for plotting all the individual fingerprints.
Prefix = a prefix for the resulting PNG file."""
if 'individual_fingerprints' in a.info and not self.recalculate:
fp, typedic = a.info['individual_fingerprints']
else:
a_top = a[-self.n_top:]
fp, typedic = self._take_fingerprints(a_top, individual=True)
a.info['individual_fingerprints'] = [fp, typedic]
npts = int(np.ceil(self.rcut * 1. / self.binwidth))
x = np.linspace(0, self.rcut, npts, endpoint=False)
for key, val in fp.items():
for key2, val2 in val.items():
plt.plot(x, val2)
plt.ylim([-1, 10])
suffix = f"_individual_fp_{key}_{key2}.png"
plt.savefig(prefix + suffix)
plt.clf()
|