1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
|
# fmt: off
from itertools import islice
from typing import IO
import numpy as np
from ase.data import atomic_numbers, covalent_radii
from ase.data.colors import jmol_colors as default_colors
from ase.io.formats import string2index
from ase.utils import irotate, rotate
def normalize(a):
return np.array(a) / np.linalg.norm(a)
def complete_camera_vectors(look=None, up=None, right=None):
"""Creates the camera (or look) basis vectors from user input and
will autocomplete missing vector or non-orthogonal vectors using dot
products. The look direction will be maintained, up direction has higher
priority than right direction"""
# ensure good input
if look is not None:
assert len(look) == 3
l = np.array(look)
if up is not None:
assert len(up) == 3
u = np.array(up)
if right is not None:
assert len(right) == 3
r = np.array(right)
if look is not None and up is not None:
r = normalize(np.cross(l, u))
u = normalize(np.cross(r, l)) # ensures complete perpendicularity
l = normalize(np.cross(u, r))
elif look is not None and right is not None:
u = normalize(np.cross(r, l))
r = normalize(np.cross(l, u)) # ensures complete perpendicularity
l = normalize(np.cross(u, r))
elif up is not None and right is not None:
l = normalize(np.cross(u, r))
r = normalize(np.cross(l, u)) # ensures complete perpendicularity
u = normalize(np.cross(r, u))
else:
raise ValueError('''At least two camera vectors of <look>, <up>,
or <right> must be specified''')
return l, u, r
def get_cell_vertex_points(cell, disp=(0.0, 0.0, 0.0)):
"""Returns 8x3 list of the cell vertex coordinates"""
cell_vertices = np.empty((2, 2, 2, 3))
displacement = np.array(disp)
for c1 in range(2):
for c2 in range(2):
for c3 in range(2):
cell_vertices[c1, c2, c3] = [c1, c2, c3] @ cell + displacement
cell_vertices.shape = (8, 3)
return cell_vertices
def update_line_order_for_atoms(L, T, D, atoms, radii):
# why/how does this happen before the camera rotation???
R = atoms.get_positions()
r2 = radii**2
for n in range(len(L)):
d = D[T[n]]
if ((((R - L[n] - d)**2).sum(1) < r2) &
(((R - L[n] + d)**2).sum(1) < r2)).any():
T[n] = -1
return T
def combine_bboxes(bbox_a, bbox_b):
"""Combines bboxes using their extrema"""
bbox_low = np.minimum(bbox_a[0], bbox_b[0])
bbox_high = np.maximum(bbox_a[1], bbox_b[1])
return np.array([bbox_low, bbox_high])
def has_cell(atoms):
return atoms.cell.rank > 0
HIDE = 0
SHOW_CELL = 1
SHOW_CELL_AND_FIT_TO_ALL = 2
SHOW_CELL_AND_FIT_TO_CELL = 3
class PlottingVariables:
# removed writer - self
def __init__(self, atoms, rotation='', show_unit_cell=2,
radii=None, bbox=None, colors=None, scale=20,
maxwidth=500, extra_offset=(0., 0.),
auto_bbox_size=1.05,
auto_image_plane_z='front_all',
):
assert show_unit_cell in (0, 1, 2, 3)
"""Handles camera/paper space transformations used for rendering, 2D
plots, ...and a few legacy features. after camera rotations, the image
plane is set to the front of structure.
atoms: Atoms object
The Atoms object to render/plot.
rotation: string or 3x3 matrix
Controls camera rotation. Can be a string with euler angles in
degrees like '45x, 90y, 0z' or a rotation matrix.
(defaults to '0x, 0y, 0z')
show_unit_cell: int 0, 1, 2, or 3
0 cell is not shown, 1 cell is shown, 2 cell is shown and bounding
box is computed to fit atoms and cell, 3 bounding box is fixed to
cell only. (default 2)
radii: list of floats
a list of atomic radii for the atoms. (default None)
bbox: list of four floats
Allows explicit control of the image plane bounding box in the form
(xlo, ylo, xhi, yhi) where x and y are the horizontal and vertical
axes of the image plane. The units are in atomic coordinates without
the paperspace scale factor. (defaults to None the automatic
bounding box is used)
colors : a list of RGB color triples
a list of the RGB color triples for each atom. (default None, uses
Jmol colors)
scale: float
The ratio between the image plane units and atomic units, e.g.
Angstroms per cm. (default 20.0)
maxwidth: float
Limits the width of the image plane. (why?) Uses paperspace units.
(default 500)
extra_offset: (float, float)
Translates the image center in the image plane by (x,y) where x and
y are the horizontal and vertical shift distances, respectively.
(default (0.0, 0.0)) should only be used for small tweaks to the
automatically fit image plane
auto_bbox_size: float
Controls the padding given to the bounding box in the image plane.
With auto_bbox_size=1.0 the structure touches the edges of the
image. auto_bbox_size>1.0 gives whitespace padding. (default 1.05)
auto_image_plane_z: string ('front_all', 'front_auto', 'legacy')
After a camera rotation, controls where to put camera image plane
relative to the atoms and cell. 'front_all' puts everything in front
of the camera. 'front_auto' sets the image plane location to
respect the show_unit_cell option so that the atoms or cell can be
ignored when setting the image plane. 'legacy' leaves the image
plane passing through the origin for backwards compatibility.
(default: 'front_all')
"""
self.show_unit_cell = show_unit_cell
self.numbers = atoms.get_atomic_numbers()
self.maxwidth = maxwidth
self.atoms = atoms
# not used in PlottingVariables, keeping for legacy
self.natoms = len(atoms)
self.auto_bbox_size = auto_bbox_size
self.auto_image_plane_z = auto_image_plane_z
self.offset = np.zeros(3)
self.extra_offset = np.array(extra_offset)
self.constraints = atoms.constraints
# extension for partial occupancies
self.frac_occ = False
self.tags = None
self.occs = None
if 'occupancy' in atoms.info:
self.occs = atoms.info['occupancy']
self.tags = atoms.get_tags()
self.frac_occ = True
# colors
self.colors = colors
if colors is None:
ncolors = len(default_colors)
self.colors = default_colors[self.numbers.clip(max=ncolors - 1)]
# radius
if radii is None:
radii = covalent_radii[self.numbers]
elif isinstance(radii, float):
radii = covalent_radii[self.numbers] * radii
else:
radii = np.array(radii)
self.radii = radii # radius in Angstroms
self.scale = scale # Angstroms per cm
self.set_rotation(rotation)
self.update_image_plane_offset_and_size_from_structure(bbox=bbox)
def to_dict(self):
out = {
'bbox': self.get_bbox(),
'rotation': self.rotation,
'scale': self.scale,
'colors': self.colors}
return out
@property
def d(self):
# XXX hopefully this can be deprecated someday.
"""Returns paperspace diameters for scale and radii lists"""
return 2 * self.scale * self.radii
def set_rotation(self, rotation):
if rotation is not None:
if isinstance(rotation, str):
rotation = rotate(rotation)
self.rotation = rotation
self.update_patch_and_line_vars()
def update_image_plane_offset_and_size_from_structure(self, bbox=None):
"""Updates image size to fit structure according to show_unit_cell
if bbox=None. Otherwise, sets the image size from bbox. bbox is in the
image plane. Note that bbox format is (xlo, ylo, xhi, yhi) for
compatibility reasons the internal functions use (2,3)"""
# zero out the offset so it's not involved in the
# to_image_plane_positions() calculations which are used to calcucate
# the offset
self.offset = np.zeros(3)
# computing the bboxes in self.atoms here makes it easier to follow the
# various options selection/choices later
bbox_atoms = self.get_bbox_from_atoms(self.atoms, self.d / 2)
if has_cell(self.atoms):
cell = self.atoms.get_cell()
disp = self.atoms.get_celldisp().flatten()
bbox_cell = self.get_bbox_from_cell(cell, disp)
bbox_combined = combine_bboxes(bbox_atoms, bbox_cell)
else:
bbox_combined = bbox_atoms
# bbox_auto is the bbox that matches the show_unit_cell option
if has_cell(self.atoms) and self.show_unit_cell in (
SHOW_CELL_AND_FIT_TO_ALL, SHOW_CELL_AND_FIT_TO_CELL):
if self.show_unit_cell == SHOW_CELL_AND_FIT_TO_ALL:
bbox_auto = bbox_combined
else:
bbox_auto = bbox_cell
else:
bbox_auto = bbox_atoms
#
if bbox is None:
middle = (bbox_auto[0] + bbox_auto[1]) / 2
im_size = self.auto_bbox_size * (bbox_auto[1] - bbox_auto[0])
# should auto_bbox_size pad the z_heght via offset?
if im_size[0] > self.maxwidth:
rescale_factor = self.maxwidth / im_size[0]
im_size *= rescale_factor
self.scale *= rescale_factor
middle *= rescale_factor # center should be rescaled too
offset = middle - im_size / 2
else:
width = (bbox[2] - bbox[0]) * self.scale
height = (bbox[3] - bbox[1]) * self.scale
im_size = np.array([width, height, 0])
offset = np.array([bbox[0], bbox[1], 0]) * self.scale
# this section shifts the image plane up and down parallel to the look
# direction to match the legacy option, or to force it allways touch the
# front most objects regardless of the show_unit_cell setting
if self.auto_image_plane_z == 'front_all':
offset[2] = bbox_combined[1, 2] # highest z in image orientation
elif self.auto_image_plane_z == 'legacy':
offset[2] = 0
elif self.auto_image_plane_z == 'front_auto':
offset[2] = bbox_auto[1, 2]
else:
raise ValueError(
f'bad image plane setting {self.auto_image_plane_z!r}')
# since we are moving the origin in the image plane (camera coordinates)
self.offset += offset
# Previously, the picture size changed with extra_offset, This is very
# counter intuitive and seems like a bug. Leaving it commented out in
# case someone relying on this likely bug needs to revert it.
self.w = im_size[0] # + self.extra_offset[0]
self.h = im_size[1] # + self.extra_offset[1]
# allows extra_offset to be 2D or 3D
for i in range(len(self.extra_offset)):
self.offset[i] -= self.extra_offset[i]
# we have to update the arcane stuff after every camera update.
self.update_patch_and_line_vars()
def center_camera_on_position(self, pos, scaled_position=False):
if scaled_position:
pos = pos @ self.atoms.cell
im_pos = self.to_image_plane_positions(pos)
cam_pos = self.to_image_plane_positions(self.get_image_plane_center())
in_plane_shift = im_pos - cam_pos
self.offset[0:2] += in_plane_shift[0:2]
self.update_patch_and_line_vars()
def get_bbox(self):
xlo = self.offset[0]
ylo = self.offset[1]
xhi = xlo + self.w
yhi = ylo + self.h
return np.array([xlo, ylo, xhi, yhi]) / self.scale
def set_rotation_from_camera_directions(self,
look=None, up=None, right=None,
scaled_position=False):
if scaled_position:
if look is not None:
look = look @ self.atoms.cell
if right is not None:
right = right @ self.atoms.cell
if up is not None:
up = up @ self.atoms.cell
look, up, right = complete_camera_vectors(look, up, right)
rotation = np.zeros((3, 3))
rotation[:, 0] = right
rotation[:, 1] = up
rotation[:, 2] = -look
self.rotation = rotation
self.update_patch_and_line_vars()
def get_rotation_angles(self):
"""Gets the rotation angles from the rotation matrix in the current
PlottingVariables object"""
return irotate(self.rotation)
def get_rotation_angles_string(self, digits=5):
fmt = '%.{:d}f'.format(digits)
angles = self.get_rotation_angles()
outstring = (fmt + 'x, ' + fmt + 'y, ' + fmt + 'z') % (angles)
return outstring
def update_patch_and_line_vars(self):
"""Updates all the line and path stuff that is still inobvious, this
function should be deprecated if nobody can understand why it's features
exist."""
cell = self.atoms.get_cell()
disp = self.atoms.get_celldisp().flatten()
positions = self.atoms.get_positions()
if self.show_unit_cell in (
SHOW_CELL, SHOW_CELL_AND_FIT_TO_ALL, SHOW_CELL_AND_FIT_TO_CELL):
L, T, D = cell_to_lines(self, cell)
cell_verts_in_atom_coords = get_cell_vertex_points(cell, disp)
cell_vertices = self.to_image_plane_positions(
cell_verts_in_atom_coords)
T = update_line_order_for_atoms(L, T, D, self.atoms, self.radii)
# D are a positions in the image plane,
# not sure why it's setup like this
D = (self.to_image_plane_positions(D) + self.offset)[:, :2]
positions = np.concatenate((positions, L), axis=0)
else:
L = np.empty((0, 3))
T = None
D = None
cell_vertices = None
# just a rotations and scaling since offset is currently [0,0,0]
image_plane_positions = self.to_image_plane_positions(positions)
self.positions = image_plane_positions
# list of 2D cell points in the imageplane without the offset
self.D = D
# integers, probably z-order for lines?
self.T = T
self.cell_vertices = cell_vertices
# no displacement since it's a vector
cell_vec_im = self.scale * self.atoms.get_cell() @ self.rotation
self.cell = cell_vec_im
def to_image_plane_positions(self, positions):
"""Converts atomic coordinates to image plane positions. The third
coordinate is distance above/below the image plane"""
im_positions = (positions @ self.rotation) * self.scale - self.offset
return im_positions
def to_atom_positions(self, im_positions):
"""Converts image plane positions to atomic coordinates."""
positions = ((im_positions + self.offset) /
self.scale) @ self.rotation.T
return positions
def get_bbox_from_atoms(self, atoms, im_radii):
"""Uses supplied atoms and radii to compute the bounding box of the
atoms in the image plane"""
im_positions = self.to_image_plane_positions(atoms.get_positions())
im_low = (im_positions - im_radii[:, None]).min(0)
im_high = (im_positions + im_radii[:, None]).max(0)
return np.array([im_low, im_high])
def get_bbox_from_cell(self, cell, disp=(0.0, 0.0, 0.0)):
"""Uses supplied cell to compute the bounding box of the cell in the
image plane"""
displacement = np.array(disp)
cell_verts_in_atom_coords = get_cell_vertex_points(cell, displacement)
cell_vertices = self.to_image_plane_positions(cell_verts_in_atom_coords)
im_low = cell_vertices.min(0)
im_high = cell_vertices.max(0)
return np.array([im_low, im_high])
def get_image_plane_center(self):
return self.to_atom_positions(np.array([self.w / 2, self.h / 2, 0]))
def get_atom_direction(self, direction):
c0 = self.to_atom_positions([0, 0, 0]) # self.get_image_plane_center()
c1 = self.to_atom_positions(direction)
atom_direction = c1 - c0
return atom_direction / np.linalg.norm(atom_direction)
def get_camera_direction(self):
"""Returns vector pointing away from camera toward atoms/cell in atomic
coordinates"""
return self.get_atom_direction([0, 0, -1])
def get_camera_up(self):
"""Returns the image plane up direction in atomic coordinates"""
return self.get_atom_direction([0, 1, 0])
def get_camera_right(self):
"""Returns the image plane right direction in atomic coordinates"""
return self.get_atom_direction([1, 0, 0])
def cell_to_lines(writer, cell):
# XXX this needs to be updated for cell vectors that are zero.
# Cannot read the code though! (What are T and D? nn?)
nlines = 0
nsegments = []
for c in range(3):
d = np.sqrt((cell[c]**2).sum())
n = max(2, int(d / 0.3))
nsegments.append(n)
nlines += 4 * n
positions = np.empty((nlines, 3))
T = np.empty(nlines, int)
D = np.zeros((3, 3))
n1 = 0
for c in range(3):
n = nsegments[c]
dd = cell[c] / (4 * n - 2)
D[c] = dd
P = np.arange(1, 4 * n + 1, 4)[:, None] * dd
T[n1:] = c
for i, j in [(0, 0), (0, 1), (1, 0), (1, 1)]:
n2 = n1 + n
positions[n1:n2] = P + i * cell[c - 2] + j * cell[c - 1]
n1 = n2
return positions, T, D
def make_patch_list(writer):
from matplotlib.patches import Circle, PathPatch, Wedge
from matplotlib.path import Path
indices = writer.positions[:, 2].argsort()
patch_list = []
for a in indices:
xy = writer.positions[a, :2]
if a < writer.natoms:
r = writer.d[a] / 2
if writer.frac_occ:
site_occ = writer.occs[str(writer.tags[a])]
# first an empty circle if a site is not fully occupied
if (np.sum([v for v in site_occ.values()])) < 1.0:
# fill with white
fill = '#ffffff'
patch = Circle(xy, r, facecolor=fill,
edgecolor='black')
patch_list.append(patch)
start = 0
# start with the dominant species
for sym, occ in sorted(site_occ.items(),
key=lambda x: x[1],
reverse=True):
if np.round(occ, decimals=4) == 1.0:
patch = Circle(xy, r, facecolor=writer.colors[a],
edgecolor='black')
patch_list.append(patch)
else:
# jmol colors for the moment
extent = 360. * occ
patch = Wedge(
xy, r, start, start + extent,
facecolor=default_colors[atomic_numbers[sym]],
edgecolor='black')
patch_list.append(patch)
start += extent
else:
# why are there more positions than atoms?
# is this related to the cell?
if ((xy[1] + r > 0) and (xy[1] - r < writer.h) and
(xy[0] + r > 0) and (xy[0] - r < writer.w)):
patch = Circle(xy, r, facecolor=writer.colors[a],
edgecolor='black')
patch_list.append(patch)
else:
a -= writer.natoms
c = writer.T[a]
if c != -1:
hxy = writer.D[c]
patch = PathPatch(Path((xy + hxy, xy - hxy)))
patch_list.append(patch)
return patch_list
class ImageChunk:
"""Base Class for a file chunk which contains enough information to
reconstruct an atoms object."""
def build(self, **kwargs):
"""Construct the atoms object from the stored information,
and return it"""
class ImageIterator:
"""Iterate over chunks, to return the corresponding Atoms objects.
Will only build the atoms objects which corresponds to the requested
indices when called.
Assumes ``ichunks`` is in iterator, which returns ``ImageChunk``
type objects. See extxyz.py:iread_xyz as an example.
"""
def __init__(self, ichunks):
self.ichunks = ichunks
def __call__(self, fd: IO, index=None, **kwargs):
if isinstance(index, str):
index = string2index(index)
if index is None or index == ':':
index = slice(None, None, None)
if not isinstance(index, (slice, str)):
index = slice(index, (index + 1) or None)
for chunk in self._getslice(fd, index):
yield chunk.build(**kwargs)
def _getslice(self, fd: IO, indices: slice):
try:
iterator = islice(self.ichunks(fd),
indices.start, indices.stop,
indices.step)
except ValueError:
# Negative indices. Go through the whole thing to get the length,
# which allows us to evaluate the slice, and then read it again
if not hasattr(fd, 'seekable') or not fd.seekable():
raise ValueError('Negative indices only supported for '
'seekable streams')
startpos = fd.tell()
nchunks = 0
for _ in self.ichunks(fd):
nchunks += 1
fd.seek(startpos)
indices_tuple = indices.indices(nchunks)
iterator = islice(self.ichunks(fd), *indices_tuple)
return iterator
def verify_cell_for_export(cell, check_orthorhombric=True):
"""Function to verify if the cell size is defined and if the cell is
Parameters:
cell: cell object
cell to be checked.
check_orthorhombric: bool
If True, check if the cell is orthorhombric, raise an ``ValueError`` if
the cell is orthorhombric. If False, doesn't check if the cell is
orthorhombric.
Raise a ``ValueError`` if the cell if not suitable for export to mustem xtl
file or prismatic/computem xyz format:
- if cell is not orthorhombic (only when check_orthorhombric=True)
- if cell size is not defined
"""
if check_orthorhombric and not cell.orthorhombic:
raise ValueError('To export to this format, the cell needs to be '
'orthorhombic.')
if cell.rank < 3:
raise ValueError('To export to this format, the cell size needs '
'to be set: current cell is {}.'.format(cell))
def verify_dictionary(atoms, dictionary, dictionary_name):
"""
Verify a dictionary have a key for each symbol present in the atoms object.
Parameters:
dictionary: dict
Dictionary to be checked.
dictionary_name: dict
Name of the dictionary to be displayed in the error message.
cell: cell object
cell to be checked.
Raise a ``ValueError`` if the key doesn't match the atoms present in the
cell.
"""
# Check if we have enough key
for key in set(atoms.symbols):
if key not in dictionary:
raise ValueError('Missing the {} key in the `{}` dictionary.'
''.format(key, dictionary_name))
def segment_list(data, segment_size):
"""Segments a list into sublists of a specified size."""
return [data[i:i + segment_size] for i in range(0, len(data), segment_size)]
|