File: neighborlist.py

package info (click to toggle)
python-ase 3.26.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,484 kB
  • sloc: python: 148,112; xml: 2,728; makefile: 110; javascript: 47
file content (1198 lines) | stat: -rw-r--r-- 46,114 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
# fmt: off

import itertools

import numpy as np
import scipy.sparse.csgraph as csgraph
from scipy import sparse as sp
from scipy.spatial import cKDTree

from ase.cell import Cell
from ase.data import atomic_numbers, covalent_radii
from ase.geometry import (
    complete_cell,
    find_mic,
    minkowski_reduce,
    wrap_positions,
)
from ase.utils import deprecated


def natural_cutoffs(atoms, mult=1, **kwargs):
    """Generate a radial cutoff for every atom based on covalent radii.

    The covalent radii are a reasonable cutoff estimation for bonds in
    many applications such as neighborlists, so function generates an
    atoms length list of radii based on this idea.

    * atoms: An atoms object
    * mult: A multiplier for all cutoffs, useful for coarse grained adjustment
    * kwargs: Symbol of the atom and its corresponding cutoff,
      used to override the covalent radii
    """
    return [kwargs.get(atom.symbol, covalent_radii[atom.number] * mult)
            for atom in atoms]


def build_neighbor_list(atoms, cutoffs=None, **kwargs):
    """Automatically build and update a NeighborList.

    Parameters:

    atoms : :class:`~ase.Atoms` object
        Atoms to build Neighborlist for.
    cutoffs: list of floats
        Radii for each atom. If not given it will be produced by calling
        :func:`ase.neighborlist.natural_cutoffs`
    kwargs: arbitrary number of options
        Will be passed to the constructor of
        :class:`~ase.neighborlist.NeighborList`

    Returns:

    return: :class:`~ase.neighborlist.NeighborList`
        A :class:`~ase.neighborlist.NeighborList` instance (updated).
    """
    if cutoffs is None:
        cutoffs = natural_cutoffs(atoms)

    nl = NeighborList(cutoffs, **kwargs)
    nl.update(atoms)

    return nl


def get_distance_matrix(graph, limit=3):
    """Get Distance Matrix from a Graph.

    Parameters:

    graph: array, matrix or sparse matrix, 2 dimensions (N, N)
        Graph representation of the connectivity.
        See `scipy doc <https://docs.scipy.org/doc/scipy/reference/generated\
/scipy.sparse.csgraph.dijkstra.html#scipy.sparse.csgraph.dijkstra>`_
        for reference.
    limit: integer
        Maximum number of steps to analyze. For most molecular information,
        three should be enough.

    Returns:

    return: scipy.sparse.csr_matrix, shape (N, N)
        A scipy.sparse.csr_matrix. All elements that are not connected within
        *limit* steps are set to zero.

    This is a potential memory bottleneck, as csgraph.dijkstra produces a
    dense output matrix. Here we replace all np.inf values with 0 and
    transform back to csr_matrix.
    Why not dok_matrix like the connectivity-matrix? Because row-picking
    is most likely and this is super fast with csr.
    """
    mat = csgraph.dijkstra(graph, directed=False, limit=limit)
    mat[mat == np.inf] = 0
    return sp.csr_matrix(mat, dtype=np.int8)


def get_distance_indices(distanceMatrix, distance):
    """Get indices for each node that are distance or less away.

    Parameters:

    distanceMatrix: any one of scipy.sparse matrices (NxN)
        Matrix containing distance information of atoms. Get it e.g. with
        :func:`~ase.neighborlist.get_distance_matrix`
    distance: integer
        Number of steps to allow.

    Returns:

    return: list of length N
        List of length N. return[i] has all indices connected to item i.

    The distance matrix only contains shortest paths, so when looking for
    distances longer than one, we need to add the lower values for cases
    where atoms are connected via a shorter path too.
    """
    shape = distanceMatrix.get_shape()
    indices = []
    # iterate over rows
    for i in range(shape[0]):
        row = distanceMatrix.getrow(i)[0]
        # find all non-zero
        found = sp.find(row)
        # screen for smaller or equal distance
        equal = np.where(found[-1] <= distance)[0]
        # found[1] contains the indexes
        indices.append([found[1][x] for x in equal])
    return indices


def mic(dr, cell, pbc=True):
    """
    Apply minimum image convention to an array of distance vectors.

    Parameters:

    dr : array_like
        Array of distance vectors.
    cell : array_like
        Simulation cell.
    pbc : array_like, optional
        Periodic boundary conditions in x-, y- and z-direction. Default is to
        assume periodic boundaries in all directions.

    Returns:

    dr : array
        Array of distance vectors, wrapped according to the minimum image
        convention.
    """
    dr, _ = find_mic(dr, cell, pbc)
    return dr


def primitive_neighbor_list(quantities, pbc, cell, positions, cutoff,
                            numbers=None, self_interaction=False,
                            use_scaled_positions=False, max_nbins=1e6):
    """Compute a neighbor list for an atomic configuration.

    Atoms outside periodic boundaries are mapped into the box. Atoms
    outside nonperiodic boundaries are included in the neighbor list
    but complexity of neighbor list search for those can become n^2.

    The neighbor list is sorted by first atom index 'i', but not by second
    atom index 'j'.

    Parameters:

    quantities: str
        Quantities to compute by the neighbor list algorithm. Each character
        in this string defines a quantity. They are returned in a tuple of
        the same order. Possible quantities are

            * 'i' : first atom index
            * 'j' : second atom index
            * 'd' : absolute distance
            * 'D' : distance vector
            * 'S' : shift vector (number of cell boundaries crossed by the bond
              between atom i and j). With the shift vector S, the
              distances D between atoms can be computed from:
              D = positions[j]-positions[i]+S.dot(cell)
    pbc: array_like
        3-tuple indicating giving periodic boundaries in the three Cartesian
        directions.
    cell: 3x3 matrix
        Unit cell vectors.
    positions: list of xyz-positions
        Atomic positions.  Anything that can be converted to an ndarray of
        shape (n, 3) will do: [(x1,y1,z1), (x2,y2,z2), ...]. If
        use_scaled_positions is set to true, this must be scaled positions.
    cutoff: float or dict
        Cutoff for neighbor search. It can be:

            * A single float: This is a global cutoff for all elements.
            * A dictionary: This specifies cutoff values for element
              pairs. Specification accepts element numbers of symbols.
              Example: {(1, 6): 1.1, (1, 1): 1.0, ('C', 'C'): 1.85}
            * A list/array with a per atom value: This specifies the radius of
              an atomic sphere for each atoms. If spheres overlap, atoms are
              within each others neighborhood. See
              :func:`~ase.neighborlist.natural_cutoffs`
              for an example on how to get such a list.
    self_interaction: bool
        Return the atom itself as its own neighbor if set to true.
        Default: False
    use_scaled_positions: bool
        If set to true, positions are expected to be scaled positions.
    max_nbins: int
        Maximum number of bins used in neighbor search. This is used to limit
        the maximum amount of memory required by the neighbor list.

    Returns:

    i, j, ... : array
        Tuple with arrays for each quantity specified above. Indices in `i`
        are returned in ascending order 0..len(a)-1, but the order of (i,j)
        pairs is not guaranteed.

    """

    # Naming conventions: Suffixes indicate the dimension of an array. The
    # following convention is used here:
    #     c: Cartesian index, can have values 0, 1, 2
    #     i: Global atom index, can have values 0..len(a)-1
    #     xyz: Bin index, three values identifying x-, y- and z-component of a
    #          spatial bin that is used to make neighbor search O(n)
    #     b: Linearized version of the 'xyz' bin index
    #     a: Bin-local atom index, i.e. index identifying an atom *within* a
    #        bin
    #     p: Pair index, can have value 0 or 1
    #     n: (Linear) neighbor index

    # Return empty neighbor list if no atoms are passed here
    if len(positions) == 0:
        empty_types = dict(i=(int, (0, )),
                           j=(int, (0, )),
                           D=(float, (0, 3)),
                           d=(float, (0, )),
                           S=(int, (0, 3)))
        retvals = []
        for i in quantities:
            dtype, shape = empty_types[i]
            retvals += [np.array([], dtype=dtype).reshape(shape)]
        if len(retvals) == 1:
            return retvals[0]
        else:
            return tuple(retvals)

    # Compute reciprocal lattice vectors.
    b1_c, b2_c, b3_c = np.linalg.pinv(cell).T

    # Compute distances of cell faces.
    l1 = np.linalg.norm(b1_c)
    l2 = np.linalg.norm(b2_c)
    l3 = np.linalg.norm(b3_c)
    face_dist_c = np.array([1 / l1 if l1 > 0 else 1,
                            1 / l2 if l2 > 0 else 1,
                            1 / l3 if l3 > 0 else 1])

    if isinstance(cutoff, dict):
        max_cutoff = max(cutoff.values())
    else:
        if np.isscalar(cutoff):
            max_cutoff = cutoff
        else:
            cutoff = np.asarray(cutoff)
            max_cutoff = 2 * np.max(cutoff)

    # We use a minimum bin size of 3 A
    bin_size = max(max_cutoff, 3)
    # Compute number of bins such that a sphere of radius cutoff fits into
    # eight neighboring bins.
    nbins_c = np.maximum((face_dist_c / bin_size).astype(int), [1, 1, 1])
    nbins = np.prod(nbins_c)
    # Make sure we limit the amount of memory used by the explicit bins.
    while nbins > max_nbins:
        nbins_c = np.maximum(nbins_c // 2, [1, 1, 1])
        nbins = np.prod(nbins_c)

    # Compute over how many bins we need to loop in the neighbor list search.
    neigh_search_x, neigh_search_y, neigh_search_z = \
        np.ceil(bin_size * nbins_c / face_dist_c).astype(int)

    # If we only have a single bin and the system is not periodic, then we
    # do not need to search neighboring bins
    neigh_search_x = 0 if nbins_c[0] == 1 and not pbc[0] else neigh_search_x
    neigh_search_y = 0 if nbins_c[1] == 1 and not pbc[1] else neigh_search_y
    neigh_search_z = 0 if nbins_c[2] == 1 and not pbc[2] else neigh_search_z

    # Sort atoms into bins.
    if use_scaled_positions:
        scaled_positions_ic = positions
        positions = np.dot(scaled_positions_ic, cell)
    else:
        scaled_positions_ic = np.linalg.solve(complete_cell(cell).T,
                                              positions.T).T
    bin_index_ic = np.floor(scaled_positions_ic * nbins_c).astype(int)
    cell_shift_ic = np.zeros_like(bin_index_ic)

    for c in range(3):
        if pbc[c]:
            # (Note: np.divmod does not exist in older numpies)
            cell_shift_ic[:, c], bin_index_ic[:, c] = \
                divmod(bin_index_ic[:, c], nbins_c[c])
        else:
            bin_index_ic[:, c] = np.clip(bin_index_ic[:, c], 0, nbins_c[c] - 1)

    # Convert Cartesian bin index to unique scalar bin index.
    bin_index_i = (bin_index_ic[:, 0] +
                   nbins_c[0] * (bin_index_ic[:, 1] +
                                 nbins_c[1] * bin_index_ic[:, 2]))

    # atom_i contains atom index in new sort order.
    atom_i = np.argsort(bin_index_i)
    bin_index_i = bin_index_i[atom_i]

    # Find max number of atoms per bin
    max_natoms_per_bin = np.bincount(bin_index_i).max()

    # Sort atoms into bins: atoms_in_bin_ba contains for each bin (identified
    # by its scalar bin index) a list of atoms inside that bin. This list is
    # homogeneous, i.e. has the same size *max_natoms_per_bin* for all bins.
    # The list is padded with -1 values.
    atoms_in_bin_ba = -np.ones([nbins, max_natoms_per_bin], dtype=int)
    for i in range(max_natoms_per_bin):
        # Create a mask array that identifies the first atom of each bin.
        mask = np.append([True], bin_index_i[:-1] != bin_index_i[1:])
        # Assign all first atoms.
        atoms_in_bin_ba[bin_index_i[mask], i] = atom_i[mask]

        # Remove atoms that we just sorted into atoms_in_bin_ba. The next
        # "first" atom will be the second and so on.
        mask = np.logical_not(mask)
        atom_i = atom_i[mask]
        bin_index_i = bin_index_i[mask]

    # Make sure that all atoms have been sorted into bins.
    assert len(atom_i) == 0
    assert len(bin_index_i) == 0

    # Now we construct neighbor pairs by pairing up all atoms within a bin or
    # between bin and neighboring bin. atom_pairs_pn is a helper buffer that
    # contains all potential pairs of atoms between two bins, i.e. it is a list
    # of length max_natoms_per_bin**2.
    atom_pairs_pn = np.indices((max_natoms_per_bin, max_natoms_per_bin),
                               dtype=int)
    atom_pairs_pn = atom_pairs_pn.reshape(2, -1)

    # Initialized empty neighbor list buffers.
    first_at_neightuple_nn = []
    secnd_at_neightuple_nn = []
    cell_shift_vector_x_n = []
    cell_shift_vector_y_n = []
    cell_shift_vector_z_n = []

    # This is the main neighbor list search. We loop over neighboring bins and
    # then construct all possible pairs of atoms between two bins, assuming
    # that each bin contains exactly max_natoms_per_bin atoms. We then throw
    # out pairs involving pad atoms with atom index -1 below.
    binz_xyz, biny_xyz, binx_xyz = np.meshgrid(np.arange(nbins_c[2]),
                                               np.arange(nbins_c[1]),
                                               np.arange(nbins_c[0]),
                                               indexing='ij')
    # The memory layout of binx_xyz, biny_xyz, binz_xyz is such that computing
    # the respective bin index leads to a linearly increasing consecutive list.
    # The following assert statement succeeds:
    #     b_b = (binx_xyz + nbins_c[0] * (biny_xyz + nbins_c[1] *
    #                                     binz_xyz)).ravel()
    #     assert (b_b == np.arange(np.prod(nbins_c))).all()

    # First atoms in pair.
    _first_at_neightuple_n = atoms_in_bin_ba[:, atom_pairs_pn[0]]
    for dz in range(-neigh_search_z, neigh_search_z + 1):
        for dy in range(-neigh_search_y, neigh_search_y + 1):
            for dx in range(-neigh_search_x, neigh_search_x + 1):
                # Bin index of neighboring bin and shift vector.
                shiftx_xyz, neighbinx_xyz = divmod(binx_xyz + dx, nbins_c[0])
                shifty_xyz, neighbiny_xyz = divmod(biny_xyz + dy, nbins_c[1])
                shiftz_xyz, neighbinz_xyz = divmod(binz_xyz + dz, nbins_c[2])
                neighbin_b = (neighbinx_xyz + nbins_c[0] *
                              (neighbiny_xyz + nbins_c[1] * neighbinz_xyz)
                              ).ravel()

                # Second atom in pair.
                _secnd_at_neightuple_n = \
                    atoms_in_bin_ba[neighbin_b][:, atom_pairs_pn[1]]

                # Shift vectors.
                _cell_shift_vector_x_n = \
                    np.resize(shiftx_xyz.reshape(-1, 1),
                              (max_natoms_per_bin**2, shiftx_xyz.size)).T
                _cell_shift_vector_y_n = \
                    np.resize(shifty_xyz.reshape(-1, 1),
                              (max_natoms_per_bin**2, shifty_xyz.size)).T
                _cell_shift_vector_z_n = \
                    np.resize(shiftz_xyz.reshape(-1, 1),
                              (max_natoms_per_bin**2, shiftz_xyz.size)).T

                # We have created too many pairs because we assumed each bin
                # has exactly max_natoms_per_bin atoms. Remove all surperfluous
                # pairs. Those are pairs that involve an atom with index -1.
                mask = np.logical_and(_first_at_neightuple_n != -1,
                                      _secnd_at_neightuple_n != -1)
                if mask.sum() > 0:
                    first_at_neightuple_nn += [_first_at_neightuple_n[mask]]
                    secnd_at_neightuple_nn += [_secnd_at_neightuple_n[mask]]
                    cell_shift_vector_x_n += [_cell_shift_vector_x_n[mask]]
                    cell_shift_vector_y_n += [_cell_shift_vector_y_n[mask]]
                    cell_shift_vector_z_n += [_cell_shift_vector_z_n[mask]]

    # Flatten overall neighbor list.
    first_at_neightuple_n = np.concatenate(first_at_neightuple_nn)
    secnd_at_neightuple_n = np.concatenate(secnd_at_neightuple_nn)
    cell_shift_vector_n = np.transpose([np.concatenate(cell_shift_vector_x_n),
                                        np.concatenate(cell_shift_vector_y_n),
                                        np.concatenate(cell_shift_vector_z_n)])

    # Add global cell shift to shift vectors
    cell_shift_vector_n += cell_shift_ic[first_at_neightuple_n] - \
        cell_shift_ic[secnd_at_neightuple_n]

    # Remove all self-pairs that do not cross the cell boundary.
    if not self_interaction:
        m = np.logical_not(np.logical_and(
            first_at_neightuple_n == secnd_at_neightuple_n,
            (cell_shift_vector_n == 0).all(axis=1)))
        first_at_neightuple_n = first_at_neightuple_n[m]
        secnd_at_neightuple_n = secnd_at_neightuple_n[m]
        cell_shift_vector_n = cell_shift_vector_n[m]

    # For nonperiodic directions, remove any bonds that cross the domain
    # boundary.
    for c in range(3):
        if not pbc[c]:
            m = cell_shift_vector_n[:, c] == 0
            first_at_neightuple_n = first_at_neightuple_n[m]
            secnd_at_neightuple_n = secnd_at_neightuple_n[m]
            cell_shift_vector_n = cell_shift_vector_n[m]

    # Sort neighbor list.
    i = np.argsort(first_at_neightuple_n)
    first_at_neightuple_n = first_at_neightuple_n[i]
    secnd_at_neightuple_n = secnd_at_neightuple_n[i]
    cell_shift_vector_n = cell_shift_vector_n[i]

    # Compute distance vectors.
    distance_vector_nc = positions[secnd_at_neightuple_n] - \
        positions[first_at_neightuple_n] + \
        cell_shift_vector_n.dot(cell)
    abs_distance_vector_n = \
        np.sqrt(np.sum(distance_vector_nc * distance_vector_nc, axis=1))

    # We have still created too many pairs. Only keep those with distance
    # smaller than max_cutoff.
    mask = abs_distance_vector_n < max_cutoff
    first_at_neightuple_n = first_at_neightuple_n[mask]
    secnd_at_neightuple_n = secnd_at_neightuple_n[mask]
    cell_shift_vector_n = cell_shift_vector_n[mask]
    distance_vector_nc = distance_vector_nc[mask]
    abs_distance_vector_n = abs_distance_vector_n[mask]

    if isinstance(cutoff, dict) and numbers is not None:
        # If cutoff is a dictionary, then the cutoff radii are specified per
        # element pair. We now have a list up to maximum cutoff.
        per_pair_cutoff_n = np.zeros_like(abs_distance_vector_n)
        for (atomic_number1, atomic_number2), c in cutoff.items():
            try:
                atomic_number1 = atomic_numbers[atomic_number1]
            except KeyError:
                pass
            try:
                atomic_number2 = atomic_numbers[atomic_number2]
            except KeyError:
                pass
            if atomic_number1 == atomic_number2:
                mask = np.logical_and(
                    numbers[first_at_neightuple_n] == atomic_number1,
                    numbers[secnd_at_neightuple_n] == atomic_number2)
            else:
                mask = np.logical_or(
                    np.logical_and(
                        numbers[first_at_neightuple_n] == atomic_number1,
                        numbers[secnd_at_neightuple_n] == atomic_number2),
                    np.logical_and(
                        numbers[first_at_neightuple_n] == atomic_number2,
                        numbers[secnd_at_neightuple_n] == atomic_number1))
            per_pair_cutoff_n[mask] = c
        mask = abs_distance_vector_n < per_pair_cutoff_n
        first_at_neightuple_n = first_at_neightuple_n[mask]
        secnd_at_neightuple_n = secnd_at_neightuple_n[mask]
        cell_shift_vector_n = cell_shift_vector_n[mask]
        distance_vector_nc = distance_vector_nc[mask]
        abs_distance_vector_n = abs_distance_vector_n[mask]
    elif not np.isscalar(cutoff):
        # If cutoff is neither a dictionary nor a scalar, then we assume it is
        # a list or numpy array that contains atomic radii. Atoms are neighbors
        # if their radii overlap.
        mask = abs_distance_vector_n < \
            cutoff[first_at_neightuple_n] + cutoff[secnd_at_neightuple_n]
        first_at_neightuple_n = first_at_neightuple_n[mask]
        secnd_at_neightuple_n = secnd_at_neightuple_n[mask]
        cell_shift_vector_n = cell_shift_vector_n[mask]
        distance_vector_nc = distance_vector_nc[mask]
        abs_distance_vector_n = abs_distance_vector_n[mask]

    # Assemble return tuple.
    retvals = []
    for q in quantities:
        if q == 'i':
            retvals += [first_at_neightuple_n]
        elif q == 'j':
            retvals += [secnd_at_neightuple_n]
        elif q == 'D':
            retvals += [distance_vector_nc]
        elif q == 'd':
            retvals += [abs_distance_vector_n]
        elif q == 'S':
            retvals += [cell_shift_vector_n]
        else:
            raise ValueError('Unsupported quantity specified.')
    if len(retvals) == 1:
        return retvals[0]
    else:
        return tuple(retvals)


def neighbor_list(quantities, a, cutoff, self_interaction=False,
                  max_nbins=1e6):
    """Compute a neighbor list for an atomic configuration.

    Atoms outside periodic boundaries are mapped into the box. Atoms
    outside nonperiodic boundaries are included in the neighbor list
    but complexity of neighbor list search for those can become n^2.

    The neighbor list is sorted by first atom index 'i', but not by second
    atom index 'j'.

    Parameters
    ----------
    quantities: str
        Quantities to compute by the neighbor list algorithm. Each character
        in this string defines a quantity. They are returned in a tuple of
        the same order. Possible quantities are:

           * 'i' : first atom index
           * 'j' : second atom index
           * 'd' : absolute distance
           * 'D' : distance vector
           * 'S' : shift vector (number of cell boundaries crossed by the bond
             between atom i and j). With the shift vector S, the
             distances D between atoms can be computed from:
             D = a.positions[j]-a.positions[i]+S.dot(a.cell)
    a: :class:`ase.Atoms`
        Atomic configuration.
    cutoff: float or dict
        Cutoff for neighbor search. It can be:

            * A single float: This is a global cutoff for all elements.
            * A dictionary: This specifies cutoff values for element
              pairs. Specification accepts element numbers of symbols.
              Example: {(1, 6): 1.1, (1, 1): 1.0, ('C', 'C'): 1.85}
            * A list/array with a per atom value: This specifies the radius of
              an atomic sphere for each atoms. If spheres overlap, atoms are
              within each others neighborhood. See
              :func:`~ase.neighborlist.natural_cutoffs`
              for an example on how to get such a list.

    self_interaction: bool
        Return the atom itself as its own neighbor if set to true.
        Default: False
    max_nbins: int
        Maximum number of bins used in neighbor search. This is used to limit
        the maximum amount of memory required by the neighbor list.

    Returns
    -------
    i, j, ...: array
        Tuple with arrays for each quantity specified above. Indices in `i`
        are returned in ascending order 0..len(a), but the order of (i,j)
        pairs is not guaranteed.

    Examples
    --------

    >>> import numpy as np
    >>> from ase.build import bulk, molecule

    1. Coordination counting

    >>> atoms = molecule('isobutane')
    >>> i = neighbor_list('i', atoms, 1.85)
    >>> coord = np.bincount(i, minlength=len(atoms))

    2. Coordination counting with different cutoffs for each pair of species

    >>> cutoff = {('H', 'H'): 1.1, ('C', 'H'): 1.3, ('C', 'C'): 1.85}
    >>> i = neighbor_list('i', atoms, cutoff)
    >>> coord = np.bincount(i, minlength=len(atoms))

    3. Pair distribution function

    >>> atoms = bulk('Cu', cubic=True) * 3
    >>> atoms.rattle(0.5, rng=np.random.default_rng(42))
    >>> cutoff = 5.0
    >>> d = neighbor_list('d', atoms, cutoff)
    >>> hist, bin_edges = np.histogram(d, bins=100, range=(0.0, cutoff))
    >>> hist = hist / len(atoms)  # per atom
    >>> rho_mean = len(atoms) / atoms.cell.volume
    >>> dv = 4.0 * np.pi * (bin_edges[1:] ** 3 - bin_edges[:-1] ** 3) / 3.0
    >>> rho = hist / dv
    >>> pdf = rho / rho_mean

    4. Forces of a pair potential

    >>> natoms = len(atoms)
    >>> i, j, d, D = neighbor_list('ijdD', atoms, 5.0)
    >>> # Lennard-Jones potential
    >>> eps = 1.0
    >>> sgm = 1.0
    >>> epairs = 4.0 * eps * ((sgm / d) ** 12 - (sgm / d) ** 6)
    >>> energy = 0.5 * epairs.sum()  # correct double-counting
    >>> dd = -4.0 * eps * (12 * (sgm / d) ** 13 - 6 * (sgm / d) ** 7) / sgm
    >>> dd = (dd * (D.T / d)).T
    >>> fx = -1.0 * np.bincount(i, weights=dd[:, 0], minlength=natoms)
    >>> fy = -1.0 * np.bincount(i, weights=dd[:, 1], minlength=natoms)
    >>> fz = -1.0 * np.bincount(i, weights=dd[:, 2], minlength=natoms)

    5. Force-constant matrix of a pair potential

    >>> i, j, d, D = neighbor_list('ijdD', atoms, 5.0)
    >>> epairs = 1.0 / d  # Coulomb potential
    >>> forces = (D.T / d**3).T  # (npairs, 3)
    >>> # second derivative
    >>> d2 = 3.0 * D[:, :, None] * D[:, None, :] / d[:, None, None] ** 5
    >>> for k in range(3):
    ...     d2[:, k, k] -= 1.0 / d**3
    >>> # force-constant matrix
    >>> fc = np.zeros((natoms, 3, natoms, 3))
    >>> for ia in range(natoms):
    ...     for ja in range(natoms):
    ...         fc[ia, :, ja, :] -= d2[(i == ia) & (j == ja), :, :].sum(axis=0)
    >>> for ia in range(natoms):
    ...     fc[ia, :, ia, :] -= fc[ia].sum(axis=1)

    """
    return primitive_neighbor_list(quantities, a.pbc,
                                   a.get_cell(complete=True),
                                   a.positions, cutoff, numbers=a.numbers,
                                   self_interaction=self_interaction,
                                   max_nbins=max_nbins)


def first_neighbors(natoms, first_atom):
    """
    Compute an index array pointing to the ranges within the neighbor list that
    contain the neighbors for a certain atom.

    Parameters:

    natoms : int
        Total number of atom.
    first_atom : array_like
        Array containing the first atom 'i' of the neighbor tuple returned
        by the neighbor list.

    Returns:

    seed : array
        Array containing pointers to the start and end location of the
        neighbors of a certain atom. Neighbors of atom k have indices from s[k]
        to s[k+1]-1.
    """
    if len(first_atom) == 0:
        return np.zeros(natoms + 1, dtype=int)
    # Create a seed array (which is returned by this function) populated with
    # -1.
    seed = -np.ones(natoms + 1, dtype=int)

    first_atom = np.asarray(first_atom)

    # Mask array contains all position where the number in the (sorted) array
    # with first atoms (in the neighbor pair) changes.
    mask = first_atom[:-1] != first_atom[1:]

    # Seed array needs to start at 0
    seed[first_atom[0]] = 0
    # Seed array needs to stop at the length of the neighbor list
    seed[-1] = len(first_atom)
    # Populate all intermediate seed with the index of where the mask array is
    # true, i.e. the index where the first_atom array changes.
    seed[first_atom[1:][mask]] = (np.arange(len(mask)) + 1)[mask]

    # Now fill all remaining -1 value with the value in the seed array right
    # behind them. (There are no neighbor so seed[i] and seed[i+1] must point)
    # to the same index.
    mask = seed == -1
    while mask.any():
        seed[mask] = seed[np.arange(natoms + 1)[mask] + 1]
        mask = seed == -1
    return seed


def get_connectivity_matrix(nl, sparse=True):
    """Return connectivity matrix for a given NeighborList (dtype=numpy.int8).

    A matrix of shape (nAtoms, nAtoms) will be returned.
    Connected atoms i and j will have matrix[i,j] == 1, unconnected
    matrix[i,j] == 0. If bothways=True the matrix will be symmetric,
    otherwise not!

    If *sparse* is True, a scipy csr matrix is returned.
    If *sparse* is False, a numpy matrix is returned.

    Note that the old and new neighborlists might give different results
    for periodic systems if bothways=False.

    Example:

    Determine which molecule in a system atom 1 belongs to.

    >>> from scipy import sparse

    >>> from ase.build import molecule
    >>> from ase.neighborlist import get_connectivity_matrix
    >>> from ase.neighborlist import natural_cutoffs
    >>> from ase.neighborlist import NeighborList

    >>> mol = molecule('CH3CH2OH')
    >>> cutoffs = natural_cutoffs(mol)
    >>> neighbor_list = NeighborList(
    ...     cutoffs, self_interaction=False, bothways=True)
    >>> neighbor_list.update(mol)
    True

    >>> matrix = neighbor_list.get_connectivity_matrix()
    >>> # or: matrix = get_connectivity_matrix(neighbor_list.nl)
    >>> n_components, component_list = sparse.csgraph.connected_components(
    ...    matrix)
    >>> idx = 1
    >>> molIdx = component_list[idx]
    >>> print("There are {} molecules in the system".format(n_components))
    There are 1 molecules in the system
    >>> print("Atom {} is part of molecule {}".format(idx, molIdx))
    Atom 1 is part of molecule 0
    >>> molIdxs = [i for i in range(len(component_list))
    ...            if component_list[i] == molIdx]
    >>> print("Atoms are part of molecule {}: {}".format(molIdx, molIdxs))
    Atoms are part of molecule 0: [0, 1, 2, 3, 4, 5, 6, 7, 8]
    """

    nAtoms = len(nl.cutoffs)

    if nl.nupdates <= 0:
        raise RuntimeError(
            'Must call update(atoms) on your neighborlist first!')

    if sparse:
        matrix = sp.dok_matrix((nAtoms, nAtoms), dtype=np.int8)
    else:
        matrix = np.zeros((nAtoms, nAtoms), dtype=np.int8)

    for i in range(nAtoms):
        for idx in nl.get_neighbors(i)[0]:
            matrix[i, idx] = 1

    return matrix


class NewPrimitiveNeighborList:
    """Neighbor list object. Wrapper around neighbor_list and first_neighbors.

    cutoffs: list of float
        List of cutoff radii - one for each atom. If the spheres (defined by
        their cutoff radii) of two atoms overlap, they will be counted as
        neighbors.
    skin: float
        If no atom has moved more than the skin-distance since the
        last call to the
        :meth:`~ase.neighborlist.NewPrimitiveNeighborList.update()`
        method, then the neighbor list can be reused. This will save
        some expensive rebuilds of the list, but extra neighbors outside
        the cutoff will be returned.
    sorted: bool
        Sort neighbor list.
    self_interaction: bool
        Should an atom return itself as a neighbor?
    bothways: bool
        Return all neighbors.  Default is to return only "half" of
        the neighbors.

    Example:

    >>> from ase.build import bulk
    >>> from ase.neighborlist import NewPrimitiveNeighborList

    >>> nl = NewPrimitiveNeighborList([2.3, 1.7])
    >>> atoms = bulk('Cu', 'fcc', a=3.6)
    >>> nl.update(atoms.pbc, atoms.get_cell(), atoms.positions)
    True
    >>> indices, offsets = nl.get_neighbors(0)
    """

    def __init__(self, cutoffs, skin=0.3, sorted=False, self_interaction=True,
                 bothways=False, use_scaled_positions=False):
        self.cutoffs = np.asarray(cutoffs) + skin
        self.skin = skin
        self.sorted = sorted
        self.self_interaction = self_interaction
        self.bothways = bothways
        self.nupdates = 0
        self.use_scaled_positions = use_scaled_positions

    def update(self, pbc, cell, positions, numbers=None):
        """Make sure the list is up to date."""

        if self.nupdates == 0:
            self.build(pbc, cell, positions, numbers=numbers)
            return True

        if ((self.pbc != pbc).any() or (self.cell != cell).any() or
                ((self.positions - positions)**2).sum(1).max() > self.skin**2):
            self.build(pbc, cell, positions, numbers=numbers)
            return True

        return False

    def build(self, pbc, cell, positions, numbers=None):
        """Build the list.
        """
        self.pbc = np.array(pbc, copy=True)
        self.cell = np.array(cell, copy=True)
        self.positions = np.array(positions, copy=True)

        pair_first, pair_second, offset_vec = \
            primitive_neighbor_list(
                'ijS', pbc, cell, positions, self.cutoffs, numbers=numbers,
                self_interaction=self.self_interaction,
                use_scaled_positions=self.use_scaled_positions)

        if len(positions) > 0 and not self.bothways:
            offset_x, offset_y, offset_z = offset_vec.T

            mask = offset_z > 0
            mask &= offset_y == 0
            mask |= offset_y > 0
            mask &= offset_x == 0
            mask |= offset_x > 0
            mask |= (pair_first <= pair_second) & (offset_vec == 0).all(axis=1)

            pair_first = pair_first[mask]
            pair_second = pair_second[mask]
            offset_vec = offset_vec[mask]

        if len(positions) > 0 and self.sorted:
            mask = np.argsort(pair_first * len(pair_first) +
                              pair_second)
            pair_first = pair_first[mask]
            pair_second = pair_second[mask]
            offset_vec = offset_vec[mask]

        self.pair_first = pair_first
        self.pair_second = pair_second
        self.offset_vec = offset_vec

        # Compute the index array point to the first neighbor
        self.first_neigh = first_neighbors(len(positions), pair_first)

        self.nupdates += 1

    def get_neighbors(self, a):
        """Return neighbors of atom number a.

        A list of indices and offsets to neighboring atoms is
        returned.  The positions of the neighbor atoms can be
        calculated like this:

        >>> from ase.build import bulk
        >>> from ase.neighborlist import NewPrimitiveNeighborList

        >>> nl = NewPrimitiveNeighborList([2.3, 1.7])
        >>> atoms = bulk('Cu', 'fcc', a=3.6)
        >>> nl.update(atoms.pbc, atoms.get_cell(), atoms.positions)
        True
        >>> indices, offsets = nl.get_neighbors(0)
        >>> for i, offset in zip(indices, offsets):
        ...     print(atoms.positions[i] + offset @ atoms.get_cell())
        ... # doctest: +SKIP

        Notice that if get_neighbors(a) gives atom b as a neighbor,
        then get_neighbors(b) will not return a as a neighbor - unless
        bothways=True was used."""

        return (self.pair_second[self.first_neigh[a]:self.first_neigh[a + 1]],
                self.offset_vec[self.first_neigh[a]:self.first_neigh[a + 1]])


class PrimitiveNeighborList:
    """Neighbor list that works without Atoms objects.

    This is less fancy, but can be used to avoid conversions between
    scaled and non-scaled coordinates which may affect cell offsets
    through rounding errors.

    Attributes
    ----------
    nupdates : int
        Number of updated times.
    """

    def __init__(self, cutoffs, skin=0.3, sorted=False, self_interaction=True,
                 bothways=False, use_scaled_positions=False):
        self.cutoffs = np.asarray(cutoffs) + skin
        self.skin = skin
        self.sorted = sorted
        self.self_interaction = self_interaction
        self.bothways = bothways
        self.nupdates = 0
        self.use_scaled_positions = use_scaled_positions

    def update(self, pbc, cell, coordinates):
        """Make sure the list is up to date.

        Returns
        -------
        bool
            True if the neighbor list is updated.
        """

        if self.nupdates == 0:
            self.build(pbc, cell, coordinates)
            return True

        if ((self.pbc != pbc).any() or (self.cell != cell).any() or (
                (self.coordinates
                 - coordinates)**2).sum(1).max() > self.skin**2):
            self.build(pbc, cell, coordinates)
            return True

        return False

    def build(self, pbc, cell, coordinates):
        """Build the list.

        Coordinates are taken to be scaled or not according
        to self.use_scaled_positions.
        """
        self.pbc = pbc = np.array(pbc, copy=True)
        self.cell = cell = Cell(cell)
        self.coordinates = coordinates = np.array(coordinates, copy=True)

        if len(self.cutoffs) != len(coordinates):
            raise ValueError('Wrong number of cutoff radii: {} != {}'
                             .format(len(self.cutoffs), len(coordinates)))

        rcmax = self.cutoffs.max() if len(self.cutoffs) > 0 else 0.0

        if self.use_scaled_positions:
            positions0 = cell.cartesian_positions(coordinates)
        else:
            positions0 = coordinates

        rcell, op = minkowski_reduce(cell, pbc)
        positions = wrap_positions(positions0, rcell, pbc=pbc, eps=0)

        natoms = len(positions)
        self.nupdates += 1
        if natoms == 0:
            self.neighbors = []
            self.displacements = []
            return

        tree = cKDTree(positions, copy_data=True)
        offsets = cell.scaled_positions(positions - positions0)
        offsets = offsets.round().astype(int)

        N = _calc_expansion(rcell, pbc, rcmax)

        neighbor_indices_a = [[] for _ in range(natoms)]
        displacements_a = [[] for _ in range(natoms)]

        for n1, n2, n3 in itertools.product(range(N[0] + 1),
                                            range(-N[1], N[1] + 1),
                                            range(-N[2], N[2] + 1)):
            if n1 == 0 and (n2 < 0 or n2 == 0 and n3 < 0):
                continue

            displacement = (n1, n2, n3) @ rcell
            shift0 = (n1, n2, n3) @ op
            indices_all = tree.query_ball_point(
                positions - displacement,
                r=self.cutoffs + rcmax,
            )

            for a in range(natoms):
                indices = indices_all[a]

                if not indices:
                    continue

                indices = np.array(indices)
                delta = positions[indices] + displacement - positions[a]
                distances = np.sqrt(np.add.reduce(delta**2, axis=1))
                cutoffs = self.cutoffs[indices] + self.cutoffs[a]
                i = indices[distances < cutoffs]
                if n1 == 0 and n2 == 0 and n3 == 0:
                    if self.self_interaction:
                        i = i[i >= a]
                    else:
                        i = i[i > a]

                neighbor_indices_a[a].append(i)

                disp = shift0 + offsets[i] - offsets[a]
                displacements_a[a].append(disp)

        self.neighbors = [np.concatenate(i) for i in neighbor_indices_a]
        self.displacements = [np.concatenate(d) for d in displacements_a]

        if self.bothways:
            neighbors2 = [[] for a in range(natoms)]
            displacements2 = [[] for a in range(natoms)]
            for a in range(natoms):
                for b, disp in zip(self.neighbors[a], self.displacements[a]):
                    # avoid double counting of self interaction
                    if a == b and (disp == 0).all():
                        continue
                    neighbors2[b].append(a)
                    displacements2[b].append(-disp)
            for a in range(natoms):
                nbs = np.concatenate((self.neighbors[a], neighbors2[a]))
                disp = np.array(list(self.displacements[a]) + displacements2[a])
                # Force correct type and shape for case of no neighbors:
                self.neighbors[a] = nbs.astype(int)
                self.displacements[a] = disp.astype(int).reshape((-1, 3))

        if self.sorted:
            _sort_neighbors(self.neighbors, self.displacements)

    def get_neighbors(self, a):
        """Return neighbors of atom number a.

        A list of indices and offsets to neighboring atoms is
        returned.  The positions of the neighbor atoms can be
        calculated like this:

        >>> from ase.build import bulk
        >>> from ase.neighborlist import NewPrimitiveNeighborList

        >>> nl = NewPrimitiveNeighborList([2.3, 1.7])
        >>> atoms = bulk('Cu', 'fcc', a=3.6)
        >>> nl.update(atoms.pbc, atoms.get_cell(), atoms.positions)
        True
        >>> indices, offsets = nl.get_neighbors(0)
        >>> for i, offset in zip(indices, offsets):
        ...     print(atoms.positions[i] + offset @ atoms.get_cell())
        ... # doctest: +SKIP

        Notice that if get_neighbors(a) gives atom b as a neighbor,
        then get_neighbors(b) will not return a as a neighbor - unless
        bothways=True was used."""

        return self.neighbors[a], self.displacements[a]


def _calc_expansion(rcell, pbc, rcmax):
    r"""Calculate expansion to contain a sphere of radius `2.0 * rcmax`.

    This function determines the minimum supercell (parallelepiped) that
    contains a sphere of radius `2.0 * rcmax`. For this, `a_1` is projected
    onto the unit vector perpendicular to `a_2 \times a_3` (i.e. the unit
    vector along the direction `b_1`) to know how many `a_1`'s the supercell
    takes to contain the sphere.
    """
    ircell = np.linalg.pinv(rcell)
    vs = np.sqrt(np.add.reduce(ircell**2, axis=0))
    ns = np.where(pbc, np.ceil(2.0 * rcmax * vs), 0.0)
    return ns.astype(int)


def _sort_neighbors(neighbors, offsets):
    """Sort neighbors first by indices and then offsets."""
    natoms = len(neighbors)
    for a in range(natoms):
        keys = (
            offsets[a][:, 2],
            offsets[a][:, 1],
            offsets[a][:, 0],
            neighbors[a]
        )
        mask = np.lexsort(keys)
        neighbors[a] = neighbors[a][mask]
        offsets[a] = offsets[a][mask]


class NeighborList:
    """Neighbor list object.

    cutoffs: list of float
        List of cutoff radii - one for each atom. If the spheres
        (defined by their cutoff radii) of two atoms overlap, they
        will be counted as neighbors. See
        :func:`~ase.neighborlist.natural_cutoffs` for an example on
        how to get such a list.

    skin: float
        If no atom has moved more than the skin-distance since the
        last call to the
        :meth:`~ase.neighborlist.NeighborList.update()` method, then
        the neighbor list can be reused.  This will save some
        expensive rebuilds of the list, but extra neighbors outside
        the cutoff will be returned.
    self_interaction: bool
        Should an atom return itself as a neighbor?
    bothways: bool
        Return all neighbors.  Default is to return only "half" of
        the neighbors.
    primitive: class
        Define which implementation to use. Older and quadratically-scaling
        :class:`~ase.neighborlist.PrimitiveNeighborList` or newer and
        linearly-scaling :class:`~ase.neighborlist.NewPrimitiveNeighborList`.

    Example:

    >>> from ase.build import molecule
    >>> from ase.neighborlist import NeighborList

    >>> atoms = molecule("CO")
    >>> nl = NeighborList([0.76, 0.66])
    >>> nl.update(atoms)
    True
    >>> indices, offsets = nl.get_neighbors(0)

    """

    def __init__(self, cutoffs, skin=0.3, sorted=False, self_interaction=True,
                 bothways=False, primitive=PrimitiveNeighborList):
        self.nl = primitive(cutoffs, skin, sorted,
                            self_interaction=self_interaction,
                            bothways=bothways)

    def update(self, atoms):
        """
        See :meth:`ase.neighborlist.PrimitiveNeighborList.update` or
        :meth:`ase.neighborlist.PrimitiveNeighborList.update`.
        """
        return self.nl.update(atoms.pbc, atoms.get_cell(complete=True),
                              atoms.positions)

    def get_neighbors(self, a):
        """
        See :meth:`ase.neighborlist.PrimitiveNeighborList.get_neighbors` or
        :meth:`ase.neighborlist.PrimitiveNeighborList.get_neighbors`.
        """
        if self.nl.nupdates <= 0:
            raise RuntimeError('Must call update(atoms) on your neighborlist '
                               'first!')

        return self.nl.get_neighbors(a)

    def get_connectivity_matrix(self, sparse=True):
        """
        See :func:`~ase.neighborlist.get_connectivity_matrix`.
        """
        return get_connectivity_matrix(self.nl, sparse)

    @property
    def nupdates(self):
        """Get number of updates."""
        return self.nl.nupdates

    @property
    @deprecated(
        'Use, e.g., `sum(_.size for _ in nl.neighbors)` '
        'for `bothways=False` and `self_interaction=False`.'
    )
    def nneighbors(self):
        """Get number of neighbors.

        .. deprecated:: 3.24.0
        """
        nneighbors = sum(indices.size for indices in self.nl.neighbors)
        if self.nl.self_interaction:
            nneighbors -= len(self.nl.neighbors)
        return nneighbors // 2 if self.nl.bothways else nneighbors

    @property
    @deprecated(
        'Use, e.g., `sum(_.any(1).sum() for _ in nl.displacements)` '
        'for `bothways=False` and `self_interaction=False`.'
    )
    def npbcneighbors(self):
        """Get number of pbc neighbors.

        .. deprecated:: 3.24.0
        """
        nneighbors = sum(
            offsets.any(axis=1).sum() for offsets in self.nl.displacements
        )  # sum up all neighbors that have non-zero supercell offsets
        return nneighbors // 2 if self.nl.bothways else nneighbors