1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
# fmt: off
import time
import numpy as np
from ase.filters import UnitCellFilter
from ase.optimize.optimize import Optimizer
class PreconFIRE(Optimizer):
def __init__(self, atoms, restart=None, logfile='-', trajectory=None,
dt=0.1, maxmove=0.2, dtmax=1.0, Nmin=5, finc=1.1, fdec=0.5,
astart=0.1, fa=0.99, a=0.1, theta=0.1,
precon=None, use_armijo=True, variable_cell=False, **kwargs):
"""
Preconditioned version of the FIRE optimizer
In time this implementation is expected to replace
:class:`~ase.optimize.fire.FIRE`.
Parameters
----------
atoms: :class:`~ase.Atoms`
The Atoms object to relax.
restart: string
JSON file used to store hessian matrix. If set, file with
such a name will be searched and hessian matrix stored will
be used, if the file exists.
trajectory: string
Trajectory file used to store optimisation path.
logfile: file object or str
If *logfile* is a string, a file with that name will be opened.
Use '-' for stdout.
variable_cell: bool
If True, wrap atoms in UnitCellFilter to relax cell and positions.
kwargs : dict, optional
Extra arguments passed to
:class:`~ase.optimize.optimize.Optimizer`.
"""
if variable_cell:
atoms = UnitCellFilter(atoms)
Optimizer.__init__(self, atoms, restart, logfile, trajectory, **kwargs)
self._actual_atoms = atoms
self.dt = dt
self.Nsteps = 0
self.maxmove = maxmove
self.dtmax = dtmax
self.Nmin = Nmin
self.finc = finc
self.fdec = fdec
self.astart = astart
self.fa = fa
self.a = a
self.theta = theta
self.precon = precon
self.use_armijo = use_armijo
def initialize(self):
self.v = None
self.skip_flag = False
self.e1 = None
def read(self):
self.v, self.dt = self.load()
def step(self, f=None):
atoms = self._actual_atoms
if f is None:
f = atoms.get_forces()
r = atoms.get_positions()
if self.precon is not None:
# Can this be moved out of the step method?
self.precon.make_precon(atoms)
invP_f = self.precon.solve(f.reshape(-1)).reshape(len(atoms), -1)
if self.v is None:
self.v = np.zeros((len(self._actual_atoms), 3))
else:
if self.use_armijo:
if self.precon is None:
v_test = self.v + self.dt * f
else:
v_test = self.v + self.dt * invP_f
r_test = r + self.dt * v_test
self.skip_flag = False
func_val = self.func(r_test)
self.e1 = func_val
if (func_val > self.func(r) -
self.theta * self.dt * np.vdot(v_test, f)):
self.v[:] *= 0.0
self.a = self.astart
self.dt *= self.fdec
self.Nsteps = 0
self.skip_flag = True
if not self.skip_flag:
v_f = np.vdot(self.v, f)
if v_f > 0.0:
if self.precon is None:
self.v = (1.0 - self.a) * self.v + self.a * f / \
np.sqrt(np.vdot(f, f)) * \
np.sqrt(np.vdot(self.v, self.v))
else:
self.v = (
(1.0 - self.a) * self.v +
self.a *
(np.sqrt(self.precon.dot(self.v.reshape(-1),
self.v.reshape(-1))) /
np.sqrt(np.dot(f.reshape(-1),
invP_f.reshape(-1))) * invP_f))
if self.Nsteps > self.Nmin:
self.dt = min(self.dt * self.finc, self.dtmax)
self.a *= self.fa
self.Nsteps += 1
else:
self.v[:] *= 0.0
self.a = self.astart
self.dt *= self.fdec
self.Nsteps = 0
if self.precon is None:
self.v += self.dt * f
else:
self.v += self.dt * invP_f
dr = self.dt * self.v
normdr = np.sqrt(np.vdot(dr, dr))
if normdr > self.maxmove:
dr = self.maxmove * dr / normdr
atoms.set_positions(r + dr)
self.dump((self.v, self.dt))
def func(self, x):
"""Objective function for use of the optimizers"""
self._actual_atoms.set_positions(x.reshape(-1, 3))
potl = self._actual_atoms.get_potential_energy()
return potl
def run(self, fmax=0.05, steps=100000000, smax=None):
if smax is None:
smax = fmax
self.smax = smax
return Optimizer.run(self, fmax, steps)
def converged(self, gradient):
"""Did the optimization converge?"""
# XXX ignoring gradient
forces = self._actual_atoms.get_forces()
if isinstance(self._actual_atoms, UnitCellFilter):
natoms = len(self._actual_atoms.atoms)
forces, stress = forces[:natoms], self._actual_atoms.stress
fmax_sq = (forces**2).sum(axis=1).max()
smax_sq = (stress**2).max()
return (fmax_sq < self.fmax**2 and smax_sq < self.smax**2)
else:
fmax_sq = (forces**2).sum(axis=1).max()
return fmax_sq < self.fmax**2
def log(self, gradient):
forces = self._actual_atoms.get_forces()
if isinstance(self._actual_atoms, UnitCellFilter):
natoms = len(self._actual_atoms.atoms)
forces, stress = forces[:natoms], self._actual_atoms.stress
fmax = np.sqrt((forces**2).sum(axis=1).max())
smax = np.sqrt((stress**2).max())
else:
fmax = np.sqrt((forces**2).sum(axis=1).max())
if self.e1 is not None:
# reuse energy at end of line search to avoid extra call
e = self.e1
else:
e = self._actual_atoms.get_potential_energy()
T = time.localtime()
if self.logfile is not None:
name = self.__class__.__name__
if isinstance(self._actual_atoms, UnitCellFilter):
self.logfile.write(
'%s: %3d %02d:%02d:%02d %15.6f %12.4f %12.4f\n' %
(name, self.nsteps, T[3], T[4], T[5], e, fmax, smax))
else:
self.logfile.write(
'%s: %3d %02d:%02d:%02d %15.6f %12.4f\n' %
(name, self.nsteps, T[3], T[4], T[5], e, fmax))
self.logfile.flush()
|