1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
# fmt: off
import itertools
import numpy as np
import pytest
from ase.build import bulk
from ase.build.supercells import (
all_score_funcs,
find_optimal_cell_shape,
make_supercell,
)
from ase.geometry.cell import cell_to_cellpar
sq2 = np.sqrt(2.0)
@pytest.fixture()
def rng():
return np.random.RandomState(seed=42)
@pytest.fixture(
params=[
bulk("NaCl", crystalstructure="rocksalt", a=4.0),
bulk("NaCl", crystalstructure="rocksalt", a=4.0, cubic=True),
bulk("Au", crystalstructure="fcc", a=4.0),
]
)
def prim(request):
return request.param
@pytest.fixture(
params=[
3 * np.diag([1, 1, 1]),
4 * np.array([[1, 1, 0], [0, 1, 1], [1, 0, 1]]),
3 * np.diag([1, 2, 1]),
]
)
def P(request):
return request.param
@pytest.fixture(params=["cell-major", "atom-major"])
def order(request):
return request.param
def test_make_supercell(prim, P, order):
n = int(round(np.linalg.det(P)))
expected = n * len(prim)
sc = make_supercell(prim, P, order=order)
assert len(sc) == expected
if order == "cell-major":
symbols_expected = list(prim.symbols) * n
elif order == "atom-major":
symbols_expected = [s for s in prim.symbols for _ in range(n)]
assert list(sc.symbols) == symbols_expected
def test_make_supercells_arrays(prim, P, order, rng):
reps = int(round(np.linalg.det(P)))
tags = list(range(len(prim)))
momenta = rng.random((len(prim), 3))
prim.set_tags(tags)
prim.set_momenta(momenta)
sc = make_supercell(prim, P, order=order)
assert reps * len(prim) == len(sc.get_tags())
if order == "cell-major":
assert all(sc.get_tags() == np.tile(tags, reps))
assert np.allclose(sc[: len(prim)].get_momenta(), prim.get_momenta())
assert np.allclose(sc.get_momenta(), np.tile(momenta, (reps, 1)))
elif order == "atom-major":
assert all(sc.get_tags() == np.repeat(tags, reps))
assert np.allclose(sc[::reps].get_momenta(), prim.get_momenta())
assert np.allclose(sc.get_momenta(), np.repeat(momenta, reps, axis=0))
@pytest.mark.parametrize(
"rep",
[
(1, 1, 1),
(1, 2, 1),
(4, 5, 6),
(40, 19, 42),
],
)
def test_make_supercell_vs_repeat(prim, rep):
P = np.diag(rep)
at1 = prim * rep
at1.wrap()
at2 = make_supercell(prim, P, wrap=True)
assert np.allclose(at1.positions, at2.positions)
assert all(at1.symbols == at2.symbols)
at1 = prim * rep
at2 = make_supercell(prim, P, wrap=False)
assert np.allclose(at1.positions, at2.positions)
assert all(at1.symbols == at2.symbols)
@pytest.mark.parametrize('score_func', all_score_funcs.values())
@pytest.mark.parametrize(
'cell, target_shape', (
([[1, 0, 0], [0, 1, 0], [0, 0, 1]], 'sc'),
([[0, 1, 1], [1, 0, 1], [1, 1, 0]], 'fcc'),
)
)
def test_cell_metric_ideal(target_shape, cell, score_func):
"""Test cell with the ideal shape.
Test if `get_deviation_from_optimal_cell_shape` returns perfect scores
(0.0) for the ideal cells.
Test also cell vectors with permutation and elongation.
"""
cell = np.asarray(cell)
indices_permuted = itertools.permutations(range(3))
elongations = range(1, 4)
for perm, factor in itertools.product(indices_permuted, elongations):
permuted_cell = np.array([cell[i] * factor for i in perm])
cell_metric = score_func(permuted_cell, target_shape=target_shape)
assert np.isclose(cell_metric, 0.0)
@pytest.mark.parametrize(
'cell, target_shape', (
([[1, 0, 0], [0, 1, 0], [0, 0, 2]], 'sc'),
([[0, 1, 1], [1, 0, 1], [2, 2, 0]], 'fcc'),
)
)
def test_cell_metric_twice_larger_lattice_vector(cell, target_shape):
"""Test cell with a twice larger lattice vector than the others.
Test if score function gives a correct value for
the cells that have a lattice vector twice longer than the others.
"""
cb2 = np.cbrt(2.0)
# cell_length
# (ai / a0) - 1.0
# sqrt((1./cb2 - 1.)**2 + (1./cb2 - 1.)**2 + (2./cb2 - 1.)**2)
dia1 = (1. / cb2 - 1.) ** 2
dia2 = (2. / cb2 - 1.) ** 2
ref_score_length = np.sqrt(2. * dia1 + dia2)
# cell_shape
# (a0 / ai) - 1.0
dia1 = (1. / cb2 ** 2 - 1.) ** 2
dia2 = (4. / cb2 ** 2 - 1.) ** 2
ang1 = (1. / cb2 ** 2 / 2. - 0.5) ** 2
ang2 = (1. / cb2 ** 2 - 0.5) ** 2
ref_score_shape = {}
ref_score_shape['sc'] = 2. * dia1 + dia2
ref_score_shape['fcc'] = 2. * dia1 + dia2 + 2. * ang1 + 4. * ang2
ref_scores = [ref_score_length, ref_score_shape[target_shape]]
for score_func, ref_score in zip(all_score_funcs.values(), ref_scores):
score = score_func(cell, target_shape)
assert np.isclose(score, ref_score)
@pytest.mark.parametrize('score_func', all_score_funcs.values())
@pytest.mark.parametrize('target_shape', ['sc', 'fcc'])
def test_multiple_cells(target_shape, score_func):
"""Test if multiple cells can be evaluated at one time."""
cells = np.array([
[[1, 0, 0], [0, 1, 0], [0, 0, 2]],
[[0, 1, 1], [1, 0, 1], [2, 2, 0]],
])
metrics_separate = []
for i in range(cells.shape[0]):
metric = score_func(cells[i], target_shape)
metrics_separate.append(metric)
metrics_together = score_func(cells, target_shape)
np.testing.assert_allclose(metrics_separate, metrics_together)
@pytest.mark.parametrize('score_func', all_score_funcs.values())
@pytest.mark.parametrize(
'cell, target_shape', (
([[-1, 0, 0], [0, -1, 0], [0, 0, -1]], 'sc'),
([[0, -1, -1], [-1, 0, -1], [-1, -1, 0]], 'fcc'),
)
)
def test_cell_metric_negative_determinant(cell, target_shape, score_func):
"""Test cell with negative determinant.
Test if `get_deviation_from_optimal_cell_shape` works for the cells with
negative determinants.
"""
cell_metric = score_func(cell, target_shape)
assert np.isclose(cell_metric, 0.0)
@pytest.mark.parametrize('score_key', all_score_funcs.keys())
@pytest.mark.parametrize('cell, target_shape, target_size, ref_cellpar', [
(np.diag([1.0, 2.0, 4.0]), 'sc', 8, [4.0, 4.0, 4.0, 90., 90., 90.]),
([[0, 1, 1], [1, 0, 1], [1, 1, 0]], 'sc', 4, [2., 2., 2., 90., 90., 90.]),
(np.eye(3), 'fcc', 2, [sq2, sq2, sq2, 60.0, 60.0, 60.0])
])
def test_find_optimal_cell_shape(
cell, target_shape, target_size, ref_cellpar, score_key):
"""Test `find_optimal_cell_shape`.
We test from sc to sc; from sc to fcc; and from fcc to sc."""
sc_matrix = find_optimal_cell_shape(cell, target_size, target_shape,
score_key=score_key,
lower_limit=-1, upper_limit=1)
score_func = all_score_funcs[score_key]
cell_metric = score_func(
sc_matrix @ cell,
target_shape,
)
sc = np.dot(sc_matrix, cell)
cellpar = cell_to_cellpar(sc)
assert np.isclose(cell_metric, 0.0)
assert np.allclose(cellpar, ref_cellpar)
@pytest.mark.parametrize('score_key', all_score_funcs.keys())
@pytest.mark.parametrize('cell, target_shape, target_size, sc_matrix_ref', [
([[1, 0, 0], [0, 1, 0], [0, 0, 1]], 'fcc', 2,
[[0, 1, 1], [1, 0, 1], [1, 1, 0]]),
([[0, 1, 1], [1, 0, 1], [1, 1, 0]], 'sc', 4,
[[-1, 1, 1], [1, -1, 1], [1, 1, -1]]),
])
def test_ideal_orientation(cell, target_shape,
target_size, sc_matrix_ref, score_key) -> None:
"""Test if the ideal orientation is selected among candidates."""
sc_matrix = find_optimal_cell_shape(cell, target_size, target_shape,
score_key=score_key)
np.testing.assert_array_equal(sc_matrix, sc_matrix_ref)
|