1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
# fmt: off
import numpy as np
import pytest
from numpy.testing import assert_array_almost_equal
from scipy.integrate import trapezoid
from ase import Atoms
from ase.calculators.calculator import CalculationFailed, CalculatorSetupError
from ase.calculators.emt import EMT
from ase.calculators.harmonic import HarmonicCalculator, HarmonicForceField
from ase.calculators.mixing import MixedCalculator
from ase.geometry.geometry import get_distances_derivatives
from ase.md.andersen import Andersen
from ase.md.velocitydistribution import (
MaxwellBoltzmannDistribution,
Stationary,
ZeroRotation,
)
from ase.optimize import BFGS
from ase.units import fs
from ase.vibrations import Vibrations
ref_pos = np.asarray([[8.7161, 7.96276, 8.48206], [8.60594, 8.04985, 9.44464],
[8.0154, 8.52264, 8.10545]])
ref_atoms = Atoms('OH2', positions=ref_pos) # relaxed water molecule
ref_energy = -14.222189 # y shift of the 'parabola' (harmonic potential)
# example Hessian matrix as obtained from DFT
hessian_x = np.asarray([[2.82630333e+01, -2.24763667e+01, 7.22478333e+00,
-2.96970000e+00, 2.34363333e+00, 2.72788333e+00,
-2.52159833e+01, 2.01307833e+01, -9.94651667e+00],
[-2.24763667e+01, 1.78621333e+01, -5.77378333e+00,
2.33703333e+00, -1.85276667e+00, -2.15118333e+00,
2.01258667e+01, -1.60350833e+01, 7.93248333e+00],
[7.22478333e+00, -5.77378333e+00, 5.72735000e+01,
7.25470000e+00, -5.75313333e+00, -4.69477333e+01,
-1.44613000e+01, 1.15504833e+01, -1.03523333e+01],
[-2.96970000e+00, 2.33703333e+00, 7.25470000e+00,
2.96170000e+00, -2.36901667e+00, -3.76841667e+00,
-2.83833333e-02, 3.06833333e-02, -3.49190000e+00],
[2.34363333e+00, -1.85276667e+00, -5.75313333e+00,
-2.36901667e+00, 1.89046667e+00, 2.95495000e+00,
2.90666667e-02, -1.80666667e-02, 2.79565000e+00],
[2.72788333e+00, -2.15118333e+00, -4.69477333e+01,
-3.76841667e+00, 2.95495000e+00, 4.89340000e+01,
1.03146667e+00, -8.18450000e-01, -1.96118333e+00],
[-2.52159833e+01, 2.01258667e+01, -1.44613000e+01,
-2.83833333e-02, 2.90666667e-02, 1.03146667e+00,
2.52034000e+01, -2.01516833e+01, 1.34293167e+01],
[2.01307833e+01, -1.60350833e+01, 1.15504833e+01,
3.06833333e-02, -1.80666667e-02, -8.18450000e-01,
-2.01516833e+01, 1.60592333e+01, -1.07369667e+01],
[-9.94651667e+00, 7.93248333e+00, -1.03523333e+01,
-3.49190000e+00, 2.79565000e+00, -1.96118333e+00,
1.34293167e+01, -1.07369667e+01, 1.23150000e+01]])
def assert_water_is_relaxed(atoms):
forces = atoms.get_forces()
assert np.allclose(np.zeros(forces.shape), forces)
assert np.allclose(ref_energy, atoms.get_potential_energy())
assert np.allclose(atoms.get_angle(1, 0, 2), ref_atoms.get_angle(1, 0, 2))
assert np.allclose(atoms.get_distance(0, 1), ref_atoms.get_distance(0, 1))
assert np.allclose(atoms.get_distance(0, 2), ref_atoms.get_distance(0, 2))
def run_optimize(atoms):
opt = BFGS(atoms)
opt.run(fmax=1e-9)
@pytest.mark.optimize()
def test_cartesians():
"""In Cartesian coordinates the first 6 trash eigenvalues (translations and
rotations) can be slightly different from zero; hence set them to zero
using an increased parameter zero_thresh.
"""
zero_thresh = 0.06 # set eigvals to zero if abs(eigenvalue) < zero_thresh
hff = HarmonicForceField(ref_atoms=ref_atoms, ref_energy=ref_energy,
hessian_x=hessian_x, zero_thresh=zero_thresh)
assert np.allclose(hff.hessian_q, hff.hessian_x)
atoms = ref_atoms.copy()
atoms.calc = HarmonicCalculator(hff)
assert_water_is_relaxed(atoms) # atoms has not been distorted
run_optimize(atoms) # nothing should happen
assert_water_is_relaxed(atoms) # atoms should still be relaxed
atoms.set_distance(0, 1, 3.5) # now distort atoms along axis, no rotation
run_optimize(atoms) # optimization should recover original
assert_water_is_relaxed(atoms) # relaxed geometry
with pytest.raises(AssertionError):
atoms.rattle() # relaxation should fail to recover the
atoms.rotate(90, 'x') # original geometry of the atoms,
run_optimize(atoms) # because Cartesian coordinates are
assert_water_is_relaxed(atoms) # not rotationally invariant.
@pytest.mark.optimize()
def test_constraints_with_cartesians():
"""Project out forces along x-component of H-atom (index 0 in the q-vector
with the Cartesian coordinates (here: x=q)). A change in the x-component of
the H-atom should not result in restoring forces, when they were projected
out from the Hessian matrix.
"""
def test_forces(calc):
atoms = ref_atoms.copy()
atoms.calc = calc
pos = ref_pos.copy()
pos[0, 0] *= 2
atoms.set_positions(pos)
run_optimize(atoms) # (no) restoring force along distorted x-component
xdiff = atoms.get_positions() - ref_pos
return all(xdiff[xdiff != 0] == pos[0, 0] / 2)
zero_thresh = 0.06 # set eigvals to zero if abs(eigenvalue) < zero_thresh
parameters = {'ref_atoms': ref_atoms, 'ref_energy': ref_energy,
'hessian_x': hessian_x, 'zero_thresh': zero_thresh}
hff = HarmonicForceField(**parameters)
calc = HarmonicCalculator(hff)
assert not test_forces(calc) # restoring force along distorted x-component
parameters['constrained_q'] = [0] # project out the coordinate with index 0
hff = HarmonicForceField(**parameters)
calc = HarmonicCalculator(hff)
assert test_forces(calc) # no restoring force along distorted x-component
def setup_water(calc):
atoms = ref_atoms.copy()
atoms.calc = calc
assert_water_is_relaxed(atoms)
atoms.rattle(0.3)
atoms.rotate(160, 'x')
assert not np.allclose(ref_energy, atoms.get_potential_energy())
return atoms
# start doc example 3
dist_defs = [[0, 1], [1, 2], [2, 0]] # define three distances by atom indices
def water_get_q_from_x(atoms):
"""Simple internal coordinates to describe water with three distances."""
q_vec = [atoms.get_distance(i, j) for i, j in dist_defs]
return np.asarray(q_vec)
def water_get_jacobian(atoms):
"""Function to return the Jacobian for the water molecule described by
three distances."""
pos = atoms.get_positions()
dist_vecs = [pos[j] - pos[i] for i, j in dist_defs]
derivs = get_distances_derivatives(dist_vecs)
jac = []
for i, defin in enumerate(dist_defs):
dqi_dxj = np.zeros(ref_pos.shape)
for j, deriv in enumerate(derivs[i]):
dqi_dxj[defin[j]] = deriv
jac.append(dqi_dxj.flatten())
return np.asarray(jac)
# end doc example 3
def test_raise_Errors():
with pytest.raises(CalculatorSetupError):
HarmonicForceField(ref_atoms=ref_atoms, hessian_x=hessian_x,
get_q_from_x=lambda x: x)
with pytest.raises(CalculatorSetupError):
HarmonicForceField(ref_atoms=ref_atoms, hessian_x=hessian_x,
variable_orientation=True)
with pytest.raises(CalculatorSetupError):
HarmonicForceField(ref_atoms=ref_atoms, hessian_x=hessian_x,
cartesian=False)
with pytest.raises(CalculationFailed):
hff = HarmonicForceField(ref_atoms=ref_atoms, ref_energy=ref_energy,
hessian_x=hessian_x,
get_q_from_x=water_get_q_from_x,
get_jacobian=lambda x: np.ones((3, 9)),
cartesian=True, variable_orientation=True)
calc = HarmonicCalculator(hff)
setup_water(calc)
@pytest.mark.optimize()
def test_internals():
parameters = {'ref_atoms': ref_atoms, 'ref_energy': ref_energy,
'hessian_x': hessian_x, 'get_q_from_x': water_get_q_from_x,
'get_jacobian': water_get_jacobian, 'cartesian': False}
hff = HarmonicForceField(**parameters) # calculation in internals
calc = HarmonicCalculator(hff)
atoms = setup_water(calc) # distorted copy of ref_atoms
run_optimize(atoms) # recover original configuration
assert_water_is_relaxed(atoms)
parameters['cartesian'] = True # calculation in Cartesian Coordinates
hff = HarmonicForceField(**parameters)
calc = HarmonicCalculator(hff)
atoms = setup_water(calc) # 'variable_orientation' not set to True!
# but water has rotational degrees of freedom
run_optimize(atoms)
with pytest.raises(AssertionError): # hence forces were incorrect
assert_water_is_relaxed(atoms) # original configuration not recovered
parameters['variable_orientation'] = True
hff = HarmonicForceField(**parameters)
calc = HarmonicCalculator(hff)
atoms = setup_water(calc)
run_optimize(atoms)
assert_water_is_relaxed(atoms) # relaxation succeeded despite rotation
@pytest.mark.optimize()
def test_compatible_with_ase_vibrations():
atoms = ref_atoms.copy()
atoms.calc = EMT()
run_optimize(atoms)
opt_atoms = atoms.copy()
opt_energy = atoms.get_potential_energy()
vib = Vibrations(atoms, nfree=2)
vib.run()
energies = vib.get_energies()
vib_data = vib.get_vibrations()
hessian_2d = vib_data.get_hessian_2d()
vib.clean()
hff = HarmonicForceField(ref_atoms=opt_atoms, ref_energy=opt_energy,
hessian_x=hessian_2d)
calc_harmonic = HarmonicCalculator(hff)
atoms = ref_atoms.copy()
atoms.calc = calc_harmonic
vib = Vibrations(atoms, nfree=4, delta=1e-5)
vib.run()
assert np.allclose(energies, vib.get_energies())
vib.clean()
hff = HarmonicForceField(ref_atoms=ref_atoms, ref_energy=ref_energy,
hessian_x=hessian_2d,
get_q_from_x=water_get_q_from_x,
get_jacobian=water_get_jacobian, cartesian=True)
calc_harmonic = HarmonicCalculator(hff)
atoms = ref_atoms.copy()
atoms.calc = calc_harmonic
vib = Vibrations(atoms, nfree=4, delta=1e-5)
vib.run() # 3 transl and 3 rot are removed by internal coordinates
assert_array_almost_equal(energies[-3:], vib.get_energies()[-3:], decimal=2)
def test_thermodynamic_integration():
parameters = {'ref_atoms': ref_atoms, 'ref_energy': ref_energy,
'hessian_x': hessian_x, 'get_q_from_x': water_get_q_from_x,
'get_jacobian': water_get_jacobian, 'cartesian': True,
'variable_orientation': True}
hff_1 = HarmonicForceField(**parameters)
calc_harmonic_1 = HarmonicCalculator(hff_1)
parameters['cartesian'] = False
hff_0 = HarmonicForceField(**parameters)
calc_harmonic_0 = HarmonicCalculator(hff_0)
ediffs = {} # collect energy difference for varying lambda coupling
lambs = [0.00, 0.25, 0.50, 0.75, 1.00] # integration grid
for lamb in lambs:
ediffs[lamb] = []
calc_linearCombi = MixedCalculator(calc_harmonic_0, calc_harmonic_1,
1 - lamb, lamb)
atoms = ref_atoms.copy()
atoms.calc = calc_linearCombi
MaxwellBoltzmannDistribution(atoms, temperature_K=300, force_temp=True)
Stationary(atoms)
ZeroRotation(atoms)
with Andersen(atoms, 0.5 * fs, temperature_K=300, andersen_prob=0.05,
fixcm=False) as dyn:
for _ in dyn.irun(50): # should be much longer for production runs
e0, e1 = calc_linearCombi.get_energy_contributions(atoms)
ediffs[lamb].append(float(e1) - float(e0))
ediffs[lamb] = np.mean(ediffs[lamb])
dA = trapezoid([ediffs[lamb] for lamb in lambs], x=lambs) # anharm. corr.
assert -0.005 < dA < 0.005 # the MD run is to short for convergence
if dA == 0.0:
raise ValueError('there is most likely something wrong, but it could '
'also be sheer coincidence')
|