1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
|
# fmt: off
"""Quantum ESPRESSO file parsers.
Implemented:
* Input file (pwi)
* Output file (pwo) with vc-relax
"""
import io
import numpy as np
import pytest
import ase.build
import ase.io
from ase import Atoms
from ase.calculators.calculator import compare_atoms
from ase.constraints import FixAtoms, FixCartesian, FixScaled
from ase.io.espresso import (
get_atomic_species,
parse_position_line,
read_espresso_in,
read_fortran_namelist,
write_espresso_in,
write_fortran_namelist,
)
from ase.units import create_units
# This file is parsed correctly by pw.x, even though things are
# scattered all over the place with some namelist edge cases
pw_input_text = """
&CONTrol
prefix = 'surf_110_H2_md'
calculation = 'md'
restart_mode = 'from_scratch'
pseudo_dir = '.'
outdir = './surf_110_!H2_m=d_sc,ratch/'
verbosity = 'default'
tprnfor = .true.
tstress = .True.
! disk_io = 'low'
wf_collect = .false.
max_seconds = 82800
forc_con!v_thr = 1e-05
etot_conv_thr = 1e-06
dt = 41.3 , /
&SYSTEM ecutwfc = 63, ecutrho = 577, ibrav = 0,
nat = 8, ntyp = 2, occupations = 'smearing',
smearing = 'marzari-vanderbilt',
degauss = 0.01, nspin = 2, ! nosym = .true. ,
starting_magnetization(2) = 5.12 /
&ELECTRONS
electron_maxstep = 300
mixing_beta = 0.1
conv_thr = 1d-07
mixing_mode = 'local-TF'
scf_must_converge = False
/
&IONS
ion_dynamics = 'verlet'
ion_temperature = 'rescaling'
tolp = 50.0
tempw = 500.0
/
ATOMIC_SPECIES
H 1.008 H.pbe-rrkjus_psl.0.1.UPF
Fe 55.845 Fe.pbe-spn-rrkjus_psl.0.2.1.UPF
K_POINTS automatic
2 2 2 1 1 1
CELL_PARAMETERS angstrom
5.6672000000000002 0.0000000000000000 0.0000000000000000
0.0000000000000000 8.0146311006808038 0.0000000000000000
0.0000000000000000 0.0000000000000000 27.0219466510212101
ATOMIC_POSITIONS angstrom
Fe 0.0000000000 0.0000000000 0.0000000000 0 0 0
Fe 1.4168000000 2.0036577752 -0.0000000000 0 0 0
Fe 0.0000000000 2.0036577752 2.0036577752 0 0 0
Fe 1.4168000000 0.0000000000 2.0036577752 0 0 0
Fe 0.0000000000 0.0000000000 4.0073155503
Fe 1.4168000000 2.0036577752 4.0073155503
H 0.0000000000 2.0036577752 6.0109733255
H 1.4168000000 0.0000000000 6.0109733255
"""
# Trimmed to only include lines of relevance
pw_output_text = """
Program PWSCF v.5.3.0 (svn rev. 11974) starts on 19May2016 at 7:48:12
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
...
bravais-lattice index = 0
lattice parameter (alat) = 5.3555 a.u.
unit-cell volume = 155.1378 (a.u.)^3
number of atoms/cell = 3
number of atomic types = 2
number of electrons = 33.00
number of Kohn-Sham states= 21
kinetic-energy cutoff = 144.0000 Ry
charge density cutoff = 1728.0000 Ry
convergence threshold = 1.0E-10
mixing beta = 0.1000
number of iterations used = 8 plain mixing
Exchange-correlation = PBE ( 1 4 3 4 0 0)
nstep = 50
celldm(1)= 5.355484 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( 1.000000 0.000000 0.000000 )
a(2) = ( 0.000000 1.010000 0.000000 )
a(3) = ( 0.000000 0.000000 1.000000 )
...
Cartesian axes
site n. atom positions (alat units)
1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
2 Fe tau( 2) = ( 0.5000000 0.5050000 0.5000000 )
3 H tau( 3) = ( 0.5000000 0.5050000 0.0000000 )
...
Magnetic moment per site:
atom: 1 charge: 10.9188 magn: 1.9476 constr: 0.0000
atom: 2 charge: 10.9402 magn: 1.5782 constr: 0.0000
atom: 3 charge: 0.8835 magn: -0.0005 constr: 0.0000
total cpu time spent up to now is 125.3 secs
End of self-consistent calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 19.3154 ev
! total energy = -509.83425823 Ry
Harris-Foulkes estimate = -509.83425698 Ry
estimated scf accuracy < 8.1E-11 Ry
The total energy is the sum of the following terms:
one-electron contribution = -218.72329117 Ry
hartree contribution = 130.90381466 Ry
xc contribution = -70.71031046 Ry
ewald contribution = -351.30448923 Ry
smearing contrib. (-TS) = 0.00001797 Ry
total magnetization = 4.60 Bohr mag/cell
absolute magnetization = 4.80 Bohr mag/cell
convergence has been achieved in 23 iterations
negative rho (up, down): 0.000E+00 3.221E-05
Forces acting on atoms (Ry/au):
atom 1 type 2 force = 0.00000000 0.00000000 0.00000000
atom 2 type 2 force = 0.00000000 0.00000000 0.00000000
atom 3 type 1 force = 0.00000000 0.00000000 0.00000000
Total force = 0.000000 Total SCF correction = 0.000000
entering subroutine stress ...
negative rho (up, down): 0.000E+00 3.221E-05
total stress (Ry/bohr**3) (kbar) P= 384.59
0.00125485 0.00000000 0.00000000 184.59 0.00 0.00
0.00000000 0.00115848 0.00000000 0.00 170.42 0.00
0.00000000 0.00000000 0.00542982 0.00 0.00 798.75
BFGS Geometry Optimization
number of scf cycles = 1
number of bfgs steps = 0
enthalpy new = -509.8342582307 Ry
new trust radius = 0.0721468508 bohr
new conv_thr = 1.0E-10 Ry
new unit-cell volume = 159.63086 a.u.^3 ( 23.65485 Ang^3 )
CELL_PARAMETERS (angstrom)
2.834000000 0.000000000 0.000000000
0.000000000 2.945239106 0.000000000
0.000000000 0.000000000 2.834000000
ATOMIC_POSITIONS (angstrom)
Fe 0.000000000 0.000000000 0.000000000 0 0 0
Fe 1.417000000 1.472619553 1.417000000
H 1.417000000 1.472619553 0.000000000
...
Magnetic moment per site:
atom: 1 charge: 10.9991 magn: 2.0016 constr: 0.0000
atom: 2 charge: 11.0222 magn: 1.5951 constr: 0.0000
atom: 3 charge: 0.8937 magn: -0.0008 constr: 0.0000
total cpu time spent up to now is 261.2 secs
End of self-consistent calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 18.6627 ev
! total energy = -509.83806077 Ry
Harris-Foulkes estimate = -509.83805972 Ry
estimated scf accuracy < 1.3E-11 Ry
The total energy is the sum of the following terms:
one-electron contribution = -224.15358901 Ry
hartree contribution = 132.85863781 Ry
xc contribution = -70.66684834 Ry
ewald contribution = -347.87622740 Ry
smearing contrib. (-TS) = -0.00003383 Ry
total magnetization = 4.66 Bohr mag/cell
absolute magnetization = 4.86 Bohr mag/cell
convergence has been achieved in 23 iterations
negative rho (up, down): 0.000E+00 3.540E-05
Forces acting on atoms (Ry/au):
atom 1 type 2 force = 0.00000000 0.00000000 0.00000000
atom 2 type 2 force = 0.00000000 0.00000000 0.00000000
atom 3 type 1 force = 0.00000000 0.00000000 0.00000000
Total force = 0.000000 Total SCF correction = 0.000000
entering subroutine stress ...
negative rho (up, down): 0.000E+00 3.540E-05
total stress (Ry/bohr**3) (kbar) P= 311.25
0.00088081 0.00000000 0.00000000 129.57 0.00 0.00
0.00000000 0.00055559 0.00000000 0.00 81.73 0.00
0.00000000 0.00000000 0.00491106 0.00 0.00 722.44
number of scf cycles = 2
number of bfgs steps = 1
...
Begin final coordinates
CELL_PARAMETERS (angstrom)
2.834000000 0.000000000 0.000000000
0.000000000 2.945239106 0.000000000
0.000000000 0.000000000 2.834000000
ATOMIC_POSITIONS (angstrom)
Fe 0.000000000 0.000000000 0.000000000 0 0 0
Fe 1.417000000 1.472619553 1.417000000
H 1.417000000 1.472619553 0.000000000
End final coordinates
"""
pw_output_cell = """
Program PWSCF v.7.4 starts on 30Dec2024 at 16:10:39
bravais-lattice index = 0
lattice parameter (alat) = 7.2558 a.u.
unit-cell volume = 270.1072 (a.u.)^3
number of atoms/cell = 2
number of atomic types = 1
number of electrons = 8.00
number of Kohn-Sham states= 8
kinetic-energy cutoff = 30.0000 Ry
charge density cutoff = 240.0000 Ry
scf convergence threshold = 1.0E-08
mixing beta = 0.3500
number of iterations used = 8 local-TF mixing
energy convergence thresh.= 1.0E+00
force convergence thresh. = 1.0E-03
press convergence thresh. = 1.5E+02
Exchange-correlation= PBE
( 1 4 3 4 0 0 0)
nstep = 50
celldm(1)= 7.255773 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( 0.000000 0.707107 0.707107 )
a(2) = ( 0.707107 0.000000 0.707107 )
a(3) = ( 0.707107 0.707107 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -0.707107 0.707107 0.707107 )
b(2) = ( 0.707107 -0.707107 0.707107 )
b(3) = ( 0.707107 0.707107 -0.707107 )
Cartesian axes
site n. atom positions (alat units)
1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
2 Si tau( 2) = ( 0.3535534 0.3535534 0.3535534 )
number of k points= 1 Gaussian smearing, width (Ry)= 0.0010
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000
End of self-consistent calculation
k = 0.0000 0.0000 0.0000 ( 375 PWs) bands (ev):
-4.9573 7.1990 7.1990 7.1991 9.4854 9.4854 9.4854 10.6559
the Fermi energy is 8.8063 ev
! total energy = -21.58743321 Ry
estimated scf accuracy < 1.5E-09 Ry
smearing contrib. (-TS) = -0.00000000 Ry
internal energy E=F+TS = -21.58743321 Ry
The total energy is F=E-TS. E is the sum of the following terms:
one-electron contribution = 6.13011013 Ry
hartree contribution = 1.69362248 Ry
xc contribution = -12.61222208 Ry
ewald contribution = -16.79894374 Ry
convergence has been achieved in 11 iterations
Forces acting on atoms (cartesian axes, Ry/au):
atom 1 type 1 force = 0.00000000 0.00000000 0.00000000
atom 2 type 1 force = 0.00000000 0.00000000 0.00000000
Total force = 0.000000 Total SCF correction = 0.000007
Computing stress (Cartesian axis) and pressure
total stress (Ry/bohr**3) (kbar) P= 433
0.00294455 -0.00000000 -0.00000000 433.16 -0.00 -0.00
-0.00000000 0.00294455 -0.00000000 -0.00 433.16 -0.00
-0.00000000 -0.00000000 0.00294455 -0.00 -0.00 433.16
BFGS Geometry Optimization
Energy error = 1.6E-01 Ry
Gradient error = 0.0E+00 Ry/Bohr
Cell gradient error = 4.3E+02 kbar
number of scf cycles = 1
number of bfgs steps = 0
enthalpy new = -21.5874332073 Ry
new trust radius = 0.2419674028 bohr
new conv_thr = 0.0000000100 Ry
new unit-cell volume = 334.25681 a.u.^3 ( 49.53175 Ang^3 )
density = 1.88308 g/cm^3
CELL_PARAMETERS (angstrom)
-0.000000000 2.914861274 2.914861274
2.914861274 -0.000000000 2.914861274
2.914861274 2.914861274 -0.000000000
ATOMIC_POSITIONS (angstrom)
Si 0.0000000000 0.0000000000 0.0000000000
Si 1.4574306371 1.4574306371 1.4574306371
End of self-consistent calculation
k = 0.0000 0.0000 0.0000 ( 375 PWs) bands (ev):
-5.7174 5.0283 5.0283 5.0283 6.2048 7.2660 7.2660 7.2660
the Fermi energy is 5.7451 ev
! total energy = -21.70179088 Ry
estimated scf accuracy < 3.1E-09 Ry
smearing contrib. (-TS) = -0.00000000 Ry
internal energy E=F+TS = -21.70179088 Ry
The total energy is F=E-TS. E is the sum of the following terms:
one-electron contribution = 4.44939949 Ry
hartree contribution = 1.82078558 Ry
xc contribution = -12.32487369 Ry
ewald contribution = -15.64710226 Ry
convergence has been achieved in 7 iterations
Forces acting on atoms (cartesian axes, Ry/au):
atom 1 type 1 force = 0.00000000 0.00000000 -0.00000000
atom 2 type 1 force = 0.00000000 0.00000000 -0.00000000
Total force = 0.000000 Total SCF correction = 0.000001
Computing stress (Cartesian axis) and pressure
total stress (Ry/bohr**3) (kbar) P= 133
0.00090960 0.00000000 0.00000000 133.81 0.00 0.00
-0.00000000 0.00090960 0.00000000 -0.00 133.81 0.00
0.00000000 0.00000000 0.00090960 0.00 0.00 133.81
Energy error = 1.1E-01 Ry
Gradient error = 1.0E-23 Ry/Bohr
Cell gradient error = 1.3E+02 kbar
bfgs converged in 2 scf cycles and 1 bfgs steps
(criteria: energy < 1.0E+00 Ry, force < 1.0E-03 Ry/Bohr, cell < 1.5E+02
End of BFGS Geometry Optimization
Final enthalpy = -21.7017908769 Ry
File XXX/tmp-quacc-2024-12-30-15-09-59-202291-63636/pwscf.bfgs deleted, as
Begin final coordinates
new unit-cell volume = 334.25681 a.u.^3 ( 49.53175 Ang^3 )
density = 1.88308 g/cm^3
CELL_PARAMETERS (angstrom)
-0.000000000 2.914861274 2.914861274
2.914861274 -0.000000000 2.914861274
2.914861274 2.914861274 -0.000000000
ATOMIC_POSITIONS (angstrom)
Si 0.0000000000 0.0000000000 0.0000000000
Si 1.4574306371 1.4574306371 1.4574306371
End final coordinates
bravais-lattice index = 0
lattice parameter (alat) = 7.2558 a.u.
unit-cell volume = 334.2568 (a.u.)^3
number of atoms/cell = 2
number of atomic types = 1
number of electrons = 8.00
number of Kohn-Sham states= 8
kinetic-energy cutoff = 30.0000 Ry
charge density cutoff = 240.0000 Ry
scf convergence threshold = 1.0E-08
mixing beta = 0.3500
number of iterations used = 8 local-TF mixing
press convergence thresh. = 1.5E+02
Exchange-correlation= PBE
( 1 4 3 4 0 0 0)
celldm(1)= 7.255773 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.000000 0.759160 0.759160 )
a(2) = ( 0.759160 -0.000000 0.759160 )
a(3) = ( 0.759160 0.759160 -0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -0.658623 0.658623 0.658623 )
b(2) = ( 0.658623 -0.658623 0.658623 )
b(3) = ( 0.658623 0.658623 -0.658623 )
Cartesian axes
site n. atom positions (alat units)
1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
2 Si tau( 2) = ( 0.3795798 0.3795798 0.3795798 )
number of k points= 1 Gaussian smearing, width (Ry)= 0.0010
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000
End of self-consistent calculation
k = 0.0000 0.0000 0.0000 ( 471 PWs) bands (ev):
-5.7176 5.0274 5.0274 5.0274 6.2042 7.2647 7.2647 7.2647
the Fermi energy is 5.7439 ev
! total energy = -21.70223615 Ry
estimated scf accuracy < 4.9E-10 Ry
smearing contrib. (-TS) = -0.00000000 Ry
internal energy E=F+TS = -21.70223615 Ry
The total energy is F=E-TS. E is the sum of the following terms:
one-electron contribution = 4.44893174 Ry
hartree contribution = 1.82082186 Ry
xc contribution = -12.32488755 Ry
ewald contribution = -15.64710220 Ry
convergence has been achieved in 9 iterations
Forces acting on atoms (cartesian axes, Ry/au):
atom 1 type 1 force = 0.00000000 0.00000000 0.00000000
atom 2 type 1 force = 0.00000000 0.00000000 0.00000000
Total force = 0.000000 Total SCF correction = 0.000002
Computing stress (Cartesian axis) and pressure
total stress (Ry/bohr**3) (kbar) P= 134
0.00091401 -0.00000000 -0.00000000 134.46 -0.00 -0.00
-0.00000000 0.00091401 -0.00000000 -0.00 134.46 -0.00
-0.00000000 -0.00000000 0.00091401 -0.00 -0.00 134.46
"""
def test_pw_input():
"""Read pw input file."""
with open('pw_input.pwi', 'w') as pw_input_f:
pw_input_f.write(pw_input_text)
pw_input_atoms = ase.io.read('pw_input.pwi', format='espresso-in')
assert len(pw_input_atoms) == 8
assert (pw_input_atoms.get_initial_magnetic_moments()
== pytest.approx([5.12, 5.12, 5.12, 5.12, 5.12, 5.12, 0., 0.]))
def test_get_atomic_species():
"""Parser for atomic species section"""
with open('pw_input.pwi', 'w') as pw_input_f:
pw_input_f.write(pw_input_text)
with open('pw_input.pwi') as pw_input_f:
data, card_lines = read_fortran_namelist(pw_input_f)
species_card = get_atomic_species(card_lines,
n_species=data['system']['ntyp'])
assert len(species_card) == 2
assert species_card[0] == (
"H", pytest.approx(1.008), "H.pbe-rrkjus_psl.0.1.UPF")
assert species_card[1] == (
"Fe", pytest.approx(55.845), "Fe.pbe-spn-rrkjus_psl.0.2.1.UPF")
def test_pw_output():
"""Read pw output file."""
with open('pw_output.pwo', 'w') as pw_output_f:
pw_output_f.write(pw_output_text)
pw_output_traj = ase.io.read('pw_output.pwo', index=':')
assert len(pw_output_traj) == 2
assert pw_output_traj[1].get_volume() > pw_output_traj[0].get_volume()
def test_pw_output_cell():
"""Read pw output file with cell optimization."""
with open('pw_output.pwo', 'w') as pw_output_f:
pw_output_f.write(pw_output_cell)
pw_output_traj = ase.io.read('pw_output.pwo', index=':')
assert len(pw_output_traj) == 3
units = create_units('2006')
expected_first_cell = units["Bohr"] * 7.255773 * np.array(
[[0.000000, 0.707107, 0.707107],
[0.707107, 0.000000, 0.707107],
[0.707107, 0.707107, 0.000000]]
)
expected_second_cell = np.array(
[[-0.000000, 2.914861274, 2.914861274],
[2.914861274, -0.000000, 2.914861274],
[2.914861274, 2.914861274, -0.000000]]
)
assert np.allclose(pw_output_traj[0].cell, expected_first_cell)
assert np.allclose(pw_output_traj[1].cell, expected_second_cell)
def test_pw_parse_line():
"""Parse a single position line from a pw.x output file."""
txt = """ 994 Pt tau( 994) = \
( 1.4749849 0.7329881 0.0719387 )
995 Sb tau( 995) = ( 1.4212023 0.7037863 0.1242640 )
996 Sb tau( 996) = ( 1.5430640 0.7699524 0.1700400 )
997 Sb tau( 997) = ( 1.4892815 0.7407506 0.2223653 )
998 Sb tau( 998) = ( 1.6111432 0.8069166 0.2681414 )
999 Sb tau( 999) = ( 1.5573606 0.7777148 0.3204667 )
1000 Sb tau(1000) = ( 1.6792223 0.8438809 0.3662427 )
1001 Sb tau(1001) = ( 1.6254398 0.8146791 0.4185680 )
1002 Sb tau(1002) = ( 1.7473015 0.8808452 0.4643440 )
1003 Sb tau(1003) = ( 1.6935189 0.8516434 0.5166693 )
"""
x_result = [1.4749849, 1.4212023, 1.5430640, 1.4892815, 1.6111432,
1.5573606, 1.6792223, 1.6254398, 1.7473015, 1.6935189]
y_result = [0.7329881, 0.7037863, 0.7699524, 0.7407506, 0.8069166,
0.7777148, 0.8438809, 0.8146791, 0.8808452, 0.8516434]
z_result = [0.0719387, 0.1242640, 0.1700400, 0.2223653, 0.2681414,
0.3204667, 0.3662427, 0.4185680, 0.4643440, 0.5166693]
for i, line in enumerate(txt.splitlines()):
sym, x, y, z = parse_position_line(line)
if i == 0:
assert sym == "Pt"
else:
assert sym == "Sb"
assert abs(x - x_result[i]) < 1e-7
assert abs(y - y_result[i]) < 1e-7
assert abs(z - z_result[i]) < 1e-7
def test_pw_results_required():
"""Check only configurations with results are read unless requested."""
with open('pw_output.pwo', 'w') as pw_output_f:
pw_output_f.write(pw_output_text)
# ignore 'final coordinates' with no results
pw_output_traj = ase.io.read('pw_output.pwo', index=':')
assert 'energy' in pw_output_traj[-1].calc.results
assert len(pw_output_traj) == 2
# include un-calculated final config
pw_output_traj = ase.io.read('pw_output.pwo', index=':',
results_required=False)
assert len(pw_output_traj) == 3
assert 'energy' not in pw_output_traj[-1].calc.results
# get default index=-1 with results
pw_output_config = ase.io.read('pw_output.pwo')
assert 'energy' in pw_output_config.calc.results
# get default index=-1 with no results "final coordinates'
pw_output_config = ase.io.read('pw_output.pwo', results_required=False)
assert 'energy' not in pw_output_config.calc.results
def test_pw_input_write():
"""Write a structure and read it back."""
bulk = ase.build.bulk('NiO', 'rocksalt', 4.813, cubic=True)
bulk.set_initial_magnetic_moments([2.2 if atom.symbol == 'Ni' else 0.0
for atom in bulk])
fh = 'espresso_test.pwi'
pseudos = {'Ni': 'potato', 'O': 'orange'}
write_espresso_in(fh, bulk, pseudopotentials=pseudos)
readback = read_espresso_in('espresso_test.pwi')
assert np.allclose(bulk.positions, readback.positions)
sections = {'system': {
'lda_plus_u': True,
'Hubbard_U(1)': 4.0,
'Hubbard_U(2)': 0.0}}
write_espresso_in(fh, bulk, sections, pseudopotentials=pseudos,
additional_cards=["test1", "test2", "test3"])
readback = read_espresso_in('espresso_test.pwi')
with open('espresso_test.pwi') as f:
_, cards = read_fortran_namelist(f)
assert "K_POINTS gamma" in cards
assert cards[-3] == "test1"
assert cards[-1] == "test3"
assert np.allclose(bulk.positions, readback.positions)
def test_pw_input_write_raw_kpts():
"""Write a structure and read it back."""
bulk = ase.build.bulk('NiO', 'rocksalt', 4.813, cubic=True)
bulk.set_initial_magnetic_moments([2.2 if atom.symbol == 'Ni' else 0.0
for atom in bulk])
fh = 'espresso_test.pwi'
pseudos = {'Ni': 'potato', 'O': 'orange'}
rng = np.random.RandomState(42)
kpts = rng.random((10, 4))
write_espresso_in(fh, bulk, pseudopotentials=pseudos, kpts=kpts)
readback = read_espresso_in('espresso_test.pwi')
assert np.allclose(bulk.positions, readback.positions)
sections = {'system': {
'lda_plus_u': True,
'Hubbard_U(1)': 4.0,
'Hubbard_U(2)': 0.0}}
write_espresso_in(fh, bulk, sections, pseudopotentials=pseudos,
additional_cards=["test1", "test2", "test3"],
kpts=kpts)
readback = read_espresso_in('espresso_test.pwi')
with open('espresso_test.pwi') as f:
_, cards = read_fortran_namelist(f)
assert "K_POINTS crystal" in cards
assert cards[5].startswith(f"{kpts[0, 0]:.12f}"[:10])
assert cards[6].startswith(f"{kpts[1, 0]:.12f}"[:10])
assert cards[-3] == "test1"
assert cards[-1] == "test3"
assert np.allclose(bulk.positions, readback.positions)
def test_pw_input_write_nested_flat():
"""Write a structure and read it back."""
bulk = ase.build.bulk('Fe')
fh = 'espresso_test.pwi'
pseudos = {'Fe': 'carrot'}
input_data = {"control": {"calculation": "scf"},
"unused_keyword1": "unused_value1",
"used_sections": {"used_keyword1": "used_value1"}
}
with pytest.raises(DeprecationWarning):
write_espresso_in(fh, bulk, input_data=input_data,
pseudopotentials=pseudos,
mixing_mode="local-TF")
write_espresso_in(fh, bulk, input_data=input_data,
pseudopotentials=pseudos,
unusedkwarg="unused")
with open(fh) as f:
new_atoms = read_espresso_in(f)
f.seek(0)
readback = read_fortran_namelist(f)
read_string = readback[0].to_string()
assert "&USED_SECTIONS\n" in read_string
assert " used_keyword1 = 'used_value1'\n" in read_string
assert np.allclose(bulk.positions, new_atoms.positions)
def test_write_fortran_namelist_any():
fd = io.StringIO()
input_data = {
"environ": {"environ_type": "vacuum"},
"electrostatic": {"tol": 1e-10, "mix": 0.5},
"boundary": {"solvent_mode": "full"}
}
additional_cards = [
"EXTERNAL_CHARGES (bohr)",
"-0.5 0. 0. 25.697 1.0 2 3",
"-0.5 0. 0. 20.697 1.0 2 3"
]
write_fortran_namelist(fd, input_data, additional_cards=additional_cards)
result = fd.getvalue()
expected = (
"&ENVIRON\n"
" environ_type = 'vacuum'\n"
"/\n"
"&ELECTROSTATIC\n"
" tol = 1e-10\n"
" mix = 0.5\n"
"/\n"
"&BOUNDARY\n"
" solvent_mode = 'full'\n"
"/\n"
"EXTERNAL_CHARGES (bohr)\n"
"-0.5 0. 0. 25.697 1.0 2 3\n"
"-0.5 0. 0. 20.697 1.0 2 3\n"
"EOF"
)
assert result == expected
assert "ENVIRON" in result
assert "ELECTROSTATIC" in result
assert "BOUNDARY" in result
assert result.endswith("EOF")
fd.seek(0)
reread = read_fortran_namelist(fd)
assert reread[1][:-1] == additional_cards
assert reread[0] == input_data
def test_write_fortran_namelist_pw():
fd = io.StringIO()
input_data = {
"calculation": "scf",
"ecutwfc": 30.0,
"ibrav": 0,
"nat": 10,
"nbnd": 8,
"conv_thr": 1e-6,
"random": True}
binary = "pw"
write_fortran_namelist(fd, input_data, binary)
result = fd.getvalue()
assert "scf" in result
assert "ibrav" in result
assert "conv_thr" in result
assert result.endswith("EOF")
fd.seek(0)
reread = read_fortran_namelist(fd)
assert reread != input_data
def test_write_fortran_namelist_fields():
fd = io.StringIO()
input_data = {
"INPUT": {
"amass": 28.0855,
"niter_ph": 50,
"tr2_ph": 1e-6,
"flfrc": "silicon.fc"},
}
binary = "q2r"
write_fortran_namelist(
fd,
input_data,
binary,
additional_cards="test1\ntest2\ntest3\n")
result = fd.getvalue()
expected = ("&INPUT\n"
" flfrc = 'silicon.fc'\n"
" amass = 28.0855\n"
" niter_ph = 50\n"
" tr2_ph = 1e-06\n"
"/\n"
"test1\n"
"test2\n"
"test3\n"
"EOF")
assert result == expected
def test_write_fortran_namelist_list_fields():
fd = io.StringIO()
input_data = {
"PRESS_AI": {
"amass": 28.0855,
"niter_ph": 50,
"tr2_ph": 1e-6,
"flfrc": "silicon.fc"},
}
binary = "cp"
write_fortran_namelist(
fd,
input_data,
binary,
additional_cards=[
"test1",
"test2",
"test3"])
result = fd.getvalue()
expected = ("&CONTROL\n"
"/\n"
"&SYSTEM\n"
"/\n"
"&ELECTRONS\n"
"/\n"
"&IONS\n"
"/\n"
"&CELL\n"
"/\n"
"&PRESS_AI\n"
" amass = 28.0855\n"
" niter_ph = 50\n"
" tr2_ph = 1e-06\n"
" flfrc = 'silicon.fc'\n"
"/\n"
"&WANNIER\n"
"/\n"
"test1\n"
"test2\n"
"test3\n"
"EOF")
assert result == expected
class TestConstraints:
"""Test if the constraint can be recovered when writing and reading.
Notes
-----
Linear constraints in the ATOMIC_POSITIONS block in the quantum ESPRESSO
`.pwi` format apply to Cartesian coordinates, regardless of whether the
atomic positions are written in the "angstrom" or the "crystal" units.
"""
# TODO: test also mask for FixCartesian
@staticmethod
def _make_atoms_ref():
"""water molecule"""
atoms = ase.build.molecule("H2O")
atoms.cell = 10.0 * np.eye(3)
atoms.pbc = True
atoms.set_initial_magnetic_moments(len(atoms) * [0.0])
return atoms
def _apply_write_read(self, constraint) -> Atoms:
atoms_ref = self._make_atoms_ref()
atoms_ref.set_constraint(constraint)
pseudopotentials = {
"H": "h_lda_v1.2.uspp.F.UPF",
"O": "o_lda_v1.2.uspp.F.UPF",
}
buf = io.StringIO()
write_espresso_in(buf, atoms_ref, pseudopotentials=pseudopotentials)
buf.seek(0)
atoms = read_espresso_in(buf)
assert not compare_atoms(atoms_ref, atoms)
print(atoms_ref.constraints, atoms.constraints)
return atoms
def test_fix_atoms(self):
"""Test FixAtoms"""
constraint = FixAtoms(indices=(1, 2))
atoms = self._apply_write_read(constraint)
assert len(atoms.constraints) == 1
assert isinstance(atoms.constraints[0], FixAtoms)
assert all(atoms.constraints[0].index == constraint.index)
def test_fix_cartesian_line(self):
"""Test FixCartesian along line"""
# moved only along the z direction
constraint = FixCartesian(0, mask=(1, 1, 0))
atoms = self._apply_write_read(constraint)
assert len(atoms.constraints) == 1
assert isinstance(atoms.constraints[0], FixCartesian)
assert all(atoms.constraints[0].index == constraint.index)
def test_fix_cartesian_plane(self):
"""Test FixCartesian in plane"""
# moved only in the yz plane
constraint = FixCartesian((1, 2), mask=(1, 0, 0))
atoms = self._apply_write_read(constraint)
assert len(atoms.constraints) == 1
assert isinstance(atoms.constraints[0], FixCartesian)
assert all(atoms.constraints[0].index == constraint.index)
def test_fix_cartesian_multiple(self):
"""Test multiple FixCartesian"""
constraint = [FixCartesian(1), FixCartesian(2)]
atoms = self._apply_write_read(constraint)
assert len(atoms.constraints) == 1
assert isinstance(atoms.constraints[0], FixAtoms)
assert atoms.constraints[0].index.tolist() == [1, 2]
def test_fix_scaled(self):
"""Test FixScaled"""
constraint = FixScaled(0, mask=(1, 1, 0))
with pytest.raises(UserWarning):
self._apply_write_read(constraint)
|