1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
# fmt: off
import io
import numpy as np
import pytest
from ase.atoms import Atoms
from ase.calculators.calculator import compare_atoms
from ase.io import read
from ase.io.orca import (
read_dipole,
read_energy,
read_geom_orcainp,
read_orca_outputs,
write_orca,
)
from ase.units import Bohr, Hartree
def test_orca_inputfile():
sample_inputfile = """ ! engrad B3LYP def2-TZVPP
%pal nprocs 4 end
*xyz 0 1
O 0.0 0.0 0.0
H 1.0 0.0 0.0
H 0.0 1.0 0.0
*
"""
sample_inputfile_lines = sample_inputfile.splitlines()
atoms = Atoms('OHH', positions=[(0, 0, 0), (1, 0, 0), (0, 1, 0)])
kw = dict(charge=0, mult=1,
orcasimpleinput='engrad B3LYP def2-TZVPP',
orcablocks='%pal nprocs 4 end')
write_orca('orca.inp', atoms, kw)
with open('orca.inp') as fd:
lines = fd.readlines()
assert len(lines) == len(sample_inputfile_lines)
for line, expected_line in zip(lines, sample_inputfile_lines):
assert line.strip() == expected_line.strip()
def test_read_geom_orcainp():
atoms = Atoms('OHH', positions=[(0, 0, 0), (1, 0, 0), (0, 1, 0)])
kw = dict(charge=0, mult=1,
orcasimpleinput='B3LYP def2-TZVPP',
orcablocks='%pal nprocs 4 end')
fname = 'orcamolecule_test.inp'
write_orca(fname, atoms, kw)
with open(fname) as test:
atoms2 = read_geom_orcainp(test)
assert not compare_atoms(atoms, atoms2, tol=1e-7)
def test_read_orca_outputs():
sample_outputfile = """\
--------------------------------------------
MULLIKEN ATOMIC CHARGES AND SPIN POPULATIONS
--------------------------------------------
0 F : -0.223492 0.725756
1 Si: 0.515710 -0.002768
2 C : -0.452154 0.089331
3 C : -0.696844 0.022858
4 C : -0.694442 0.017446
5 C : -0.698397 0.000030
6 H : 0.207679 -0.001384
7 H : 0.184093 -0.000681
8 H : 0.184873 -0.000435
9 H : 0.184661 -0.000913
10 H : 0.212080 -0.002038
11 H : 0.185083 -0.000575
12 H : 0.182349 0.000294
13 H : 0.181951 0.000082
14 H : 0.209136 -0.000591
15 C : 0.381353 0.032364
16 C : -0.006580 0.031356
17 C : -0.123313 0.027413
18 C : -0.141712 -0.010118
19 C : -0.117620 0.060307
20 C : -0.141521 -0.009931
21 C : -0.123495 0.027134
22 H : 0.162169 -0.001285
23 H : 0.155246 0.000176
24 H : 0.156288 -0.002719
25 H : 0.155160 0.000168
26 H : 0.161737 -0.001275
Sum of atomic charges : -0.0000000
Sum of atomic spin populations: 1.0000000
Number of atoms ... 3
---------------------------------
CARTESIAN COORDINATES (ANGSTROEM)
---------------------------------
O 0.0000000 0.0000000 0.0000000
H 1.8897261 0.0000000 0.0000000
H 0.0000000 1.8897261 0.0000000
-------
TIMINGS
-------
Total SCF time: 0 days 0 hours 0 min 3 sec
Total time .... 3.805 sec
Sum of individual times .... 3.040 sec ( 79.9%)
Fock matrix formation .... 2.425 sec ( 63.7%)
XC integration .... 0.095 sec ( 3.9% of F)
Basis function eval. .... 0.020 sec ( 21.5% of XC)
Density eval. .... 0.013 sec ( 13.9% of XC)
XC-Functional eval. .... 0.012 sec ( 12.7% of XC)
XC-Potential eval. .... 0.022 sec ( 23.1% of XC)
Diagonalization .... 0.004 sec ( 0.1%)
Density matrix formation .... 0.047 sec ( 1.2%)
Population analysis .... 0.002 sec ( 0.1%)
Initial guess .... 0.470 sec ( 12.3%)
Orbital Transformation .... 0.000 sec ( 0.0%)
Orbital Orthonormalization .... 0.000 sec ( 0.0%)
DIIS solution .... 0.001 sec ( 0.0%)
SOSCF solution .... 0.010 sec ( 0.3%)
Grid generation .... 0.081 sec ( 2.1%)
------------------------- --------------------
FINAL SINGLE POINT ENERGY -76.422436201230
------------------------- --------------------
ORCA TERMINATED NORMALLY
""" # noqa: E501, W291
sample_engradfile = """\
#
# Number of atoms
#
3
#
# The current total energy in Eh
#
-76.422436201230
#
# The current gradient in Eh/bohr
#
-0.047131484960
-0.047131484716
0.000000000053
0.025621056182
0.021510428527
0.000000000034
0.021510428778
0.025621056189
-0.000000000087
#
# The atomic numbers and current coordinates in Bohr
#
8 0.0000000 0.0000000 0.0000000
1 1.8897261 0.0000000 0.0000000
1 0.0000000 1.8897261 0.0000000
"""
with open('orcamolecule_test.out', 'w') as fd:
fd.write(sample_outputfile)
with open('orcamolecule_test.engrad', 'w') as engrad:
engrad.write(sample_engradfile)
results_sample = {
'energy': -2079.560412394247,
'forces': np.array([
[2.42359838e+00, 2.42359837e+00, -2.72536956e-09],
[-1.31748767e+00, -1.10611070e+00, -1.74835028e-09],
[-1.10611071e+00, -1.31748767e+00, 4.47371984e-09]])}
results_sample['free_energy'] = results_sample['energy']
with pytest.warns(DeprecationWarning):
results = read_orca_outputs('.', 'orcamolecule_test.out')
keys = set(results)
assert keys == set(results_sample)
for key in keys:
# each result can be either float or ndarray.
assert results[key] == pytest.approx(results_sample[key])
def test_read_dipole():
"""Test if the dipole moment is parsed correctly."""
text = """\
-------------
DIPOLE MOMENT
-------------
X Y Z
Electronic contribution: 1.84602 -0.21505 -0.30526
Nuclear contribution : 1.30721 0.21236 0.34181
-----------------------------------------
Total Dipole Moment : 3.15323 -0.00269 0.03656
-----------------------------------------
Magnitude (a.u.) : 3.15344
Magnitude (Debye) : 8.01540
"""
dipole = read_dipole(io.StringIO(text))
dipole_ref = np.array((+3.15323, -0.00269, +0.03656)) * Bohr
np.testing.assert_allclose(dipole, dipole_ref)
def test_read_energy():
"""Test if the energy is parse correctly."""
text = """\
------------------------- --------------------
FINAL SINGLE POINT ENERGY -815.959737266080
------------------------- --------------------
"""
energy = read_energy(io.StringIO(text))
energy_ref = -815.959737266080 * Hartree
assert energy == energy_ref
def test_read_orca_output_file():
sample_outputfile = """\
*****************
* O R C A *
*****************
*******************************
* Energy+Gradient Calculation *
*******************************
---------------------------------
CARTESIAN COORDINATES (ANGSTROEM)
---------------------------------
O 0.0000000 0.0000000 0.0000000
H 1.8897261 0.0000000 0.0000000
H 0.0000000 1.8897261 0.0000000
----------------------
SHARK INTEGRAL PACKAGE
----------------------
Number of atoms ... 3
------------------
CARTESIAN GRADIENT
------------------
1 O : -0.047131485 -0.047131485 0.0000000001
2 H : 0.025621056 0.021510429 0.0000000000
3 H : 0.021510429 0.025621056 -0.0000000001
------------------------- --------------------
FINAL SINGLE POINT ENERGY -76.422436201230
------------------------- --------------------
ORCA TERMINATED NORMALLY
""" # noqa: W293
with open('orca_test.out', 'w') as fd:
fd.write(sample_outputfile)
results_sample = {
'energy': -2079.560412394247,
'forces': np.array([
[2.42359838e+00, 2.42359837e+00, -5.14220671e-09],
[-1.31748766e+00, -1.10611070e+00, -0.0000000e-00],
[-1.10611071e+00, -1.31748767e+00, 5.14220671e-09]]),
'positions': np.array([
[0.0000000, 0.0000000, 0.0000000],
[1.8897261, 0.0000000, 0.0000000],
[0.0000000, 1.8897261, 0.0000000]])}
results_sample['free_energy'] = results_sample['energy']
atoms = read('orca_test.out')
assert results_sample['energy'] == pytest.approx(atoms.get_total_energy())
assert results_sample['forces'] == pytest.approx(atoms.get_forces())
assert results_sample['positions'] == pytest.approx(atoms.get_positions())
|