File: test_precon_neb.py

package info (click to toggle)
python-ase 3.26.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,484 kB
  • sloc: python: 148,112; xml: 2,728; makefile: 110; javascript: 47
file content (276 lines) | stat: -rw-r--r-- 9,079 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# fmt: off
import json

import numpy as np
import pytest

from ase.build import bulk
from ase.calculators.morse import MorsePotential
from ase.constraints import FixBondLength
from ase.geometry.geometry import find_mic, get_distances
from ase.mep import NEB, NEBTools
from ase.mep.neb import NEBOptimizer
from ase.optimize import BFGS, ODE12r
from ase.optimize.precon import Exp
from ase.utils.forcecurve import fit_images

pytestmark = pytest.mark.optimize


def calc():
    return MorsePotential(A=4.0, epsilon=1.0, r0=2.55)


@pytest.fixture(scope='module')
def _setup_images_global():
    N_intermediate = 3
    N_cell = 2
    initial = bulk('Cu', cubic=True)
    initial *= N_cell

    # place vacancy near centre of cell
    D, D_len = get_distances(np.diag(initial.cell) / 2,
                             initial.positions,
                             initial.cell, initial.pbc)
    vac_index = D_len.argmin()
    vac_pos = initial.positions[vac_index]
    del initial[vac_index]

    # identify two opposing nearest neighbours of the vacancy
    D, D_len = get_distances(vac_pos,
                             initial.positions,
                             initial.cell, initial.pbc)
    D = D[0, :]
    D_len = D_len[0, :]

    nn_mask = np.abs(D_len - D_len.min()) < 1e-8
    i1 = nn_mask.nonzero()[0][0]
    i2 = ((D + D[i1])**2).sum(axis=1).argmin()

    print(f'vac_index={vac_index} i1={i1} i2={i2} '
          f'distance={initial.get_distance(i1, i2, mic=True)}')

    final = initial.copy()
    final.positions[i1] = vac_pos

    initial.calc = calc()
    final.calc = calc()

    qn = ODE12r(initial)
    qn.run(fmax=1e-3)
    qn = ODE12r(final)
    qn.run(fmax=1e-3)

    images = [initial]
    for image in range(N_intermediate):
        image = initial.copy()
        image.calc = calc()
        images.append(image)
    images.append(final)

    neb = NEB(images)
    neb.interpolate()

    return neb.images, i1, i2


@pytest.fixture()
def setup_images(_setup_images_global):
    images, i1, i2 = _setup_images_global
    new_images = [img.copy() for img in images]
    for img in new_images:
        img.calc = calc()
    return new_images, i1, i2


@pytest.fixture(scope='module')
def _ref_vacancy_global(_setup_images_global):
    # use distance from moving atom to one of its neighbours as reaction coord
    # relax intermediate image to the saddle point using a bondlength constraint
    images, i1, i2 = _setup_images_global
    initial, saddle, final = (images[0].copy(),
                              images[2].copy(),
                              images[4].copy())
    initial.calc = calc()
    saddle.calc = calc()
    final.calc = calc()
    saddle.set_constraint(FixBondLength(i1, i2))
    opt = ODE12r(saddle)
    opt.run(fmax=1e-2)
    nebtools = NEBTools([initial, saddle, final])
    Ef_ref, dE_ref = nebtools.get_barrier(fit=False)
    print('REF:', Ef_ref, dE_ref)
    return Ef_ref, dE_ref, saddle


@pytest.fixture()
def ref_vacancy(_ref_vacancy_global):
    Ef_ref, dE_ref, saddle = _ref_vacancy_global
    return Ef_ref, dE_ref, saddle.copy()


@pytest.mark.slow()
@pytest.mark.filterwarnings('ignore:estimate_mu')
@pytest.mark.parametrize('method, optimizer, precon, optmethod',
                         [('aseneb', BFGS, None, None),
                          ('improvedtangent', BFGS, None, None),
                          ('spline', NEBOptimizer, None, 'ODE'),
                          ('string', NEBOptimizer, 'Exp', 'ODE')])
def test_neb_methods(testdir, method, optimizer, precon,
                     optmethod, ref_vacancy, setup_images):
    # unpack the reference result
    Ef_ref, dE_ref, saddle_ref = ref_vacancy

    # now relax the MEP for comparison
    images, _, _ = setup_images

    fmax_history = []

    def save_fmax_history(mep):
        fmax_history.append(mep.get_residual())

    k = 0.1
    if precon == 'Exp':
        k = 0.01
    mep = NEB(images, k=k, method=method, precon=precon)

    if optmethod is not None:
        opt = optimizer(mep, method=optmethod)
    else:
        opt = optimizer(mep)
    opt.attach(save_fmax_history, 1, mep)
    opt.run(fmax=1e-2)

    nebtools = NEBTools(images)
    Ef, dE = nebtools.get_barrier(fit=False)
    print(f'{method},{optimizer.__name__},{precon} '
          f'=> Ef = {Ef:.3f}, dE = {dE:.3f}')

    forcefit = fit_images(images)

    with open(f'MEP_{method}_{optimizer.__name__}_{optmethod}'
              f'_{precon}.json', 'w') as fd:
        json.dump({'fmax_history': fmax_history,
                   'method': method,
                   'optmethod': optmethod,
                   'precon': precon,
                   'optimizer': optimizer.__name__,
                   'path': forcefit.path,
                   'energies': forcefit.energies.tolist(),
                   'fit_path': forcefit.fit_path.tolist(),
                   'fit_energies': forcefit.fit_energies.tolist(),
                   'lines': np.array(forcefit.lines).tolist(),
                   'Ef': Ef,
                   'dE': dE}, fd)

    centre = 2  # we have 5 images total, so central image has index 2
    vdiff, _ = find_mic(images[centre].positions - saddle_ref.positions,
                        images[centre].cell)
    print(f'Ef error {Ef - Ef_ref} dE error {dE - dE_ref} '
          f'position error at saddle {abs(vdiff).max()}')
    assert abs(Ef - Ef_ref) < 1e-2
    assert abs(dE - dE_ref) < 1e-2
    assert abs(vdiff).max() < 1e-2


@pytest.mark.parametrize('method', ['ODE', 'static'])
@pytest.mark.filterwarnings('ignore:NEBOptimizer did not converge')
def test_neb_optimizers(setup_images, method):
    images, _, _ = setup_images
    mep = NEB(images, method='spline', precon='Exp')
    mep.get_forces()  # needed so residuals are available
    R0 = mep.get_residual()
    opt = NEBOptimizer(mep, method=method)
    opt.run(steps=2)  # take two steps
    R1 = mep.get_residual()
    # check residual has got smaller
    assert R1 < R0


def test_precon_initialisation(setup_images):
    images, _, _ = setup_images
    mep = NEB(images, method='spline', precon='Exp')
    mep.get_forces()
    assert len(mep.precon) == len(mep.images)
    assert mep.precon[0].mu == mep.precon[1].mu


def test_single_precon_initialisation(setup_images):
    images, _, _ = setup_images
    precon = Exp()
    mep = NEB(images, method='spline', precon=precon)
    mep.get_forces()
    assert len(mep.precon) == len(mep.images)
    assert mep.precon[0].mu == mep.precon[1].mu


def test_list_precon_initialisation(setup_images):
    images, _, _ = setup_images

    precon = Exp()
    mep = NEB(images, method='spline', precon=precon)
    mep.get_forces()

    # the tested scenario is saving computed precon
    # for restarting of a calculation

    # saving as PreconImages object
    mep_restart = NEB(images, method='spline', precon=mep.precon)
    mep_restart.get_forces()
    assert len(mep_restart.precon) == len(mep_restart.images)
    assert mep_restart.precon[0].mu == mep_restart.precon[1].mu
    # saving as a list of precon objects
    mep_restart = NEB(images, method='spline', precon=mep.precon.precon)
    mep_restart.get_forces()
    assert len(mep_restart.precon) == len(mep_restart.images)
    assert mep_restart.precon[0].mu == mep_restart.precon[1].mu


def test_precon_assembly(setup_images):
    images, _, _ = setup_images
    neb = NEB(images, method='spline', precon='Exp')
    neb.get_forces()  # trigger precon assembly

    # check precon for each image is symmetric positive definite
    for image, precon in zip(neb.images, neb.precon):
        assert isinstance(precon, Exp)
        P = precon.asarray()
        N = 3 * len(image)
        assert P.shape == (N, N)
        assert np.abs(P - P.T).max() < 1e-6
        assert np.all(np.linalg.eigvalsh(P)) > 0


def test_spline_fit(setup_images):
    images, _, _ = setup_images
    neb = NEB(images)
    fit = neb.spline_fit()

    # check spline points are equally spaced
    assert np.allclose(fit.s, np.linspace(0, 1, len(images)))

    # check spline matches target at fit points
    assert np.allclose(fit.x(fit.s), fit.x_data)

    # ensure derivative is smooth across central fit point
    eps = 1e-4
    assert np.allclose(fit.dx_ds(fit.s[2] + eps), fit.dx_ds(fit.s[2] + eps))


def test_integrate_forces(setup_images):
    images, _, _ = setup_images
    forcefit = fit_images(images)

    neb = NEB(images)
    spline_points = 1000  # it is the default value
    _s, E, _F = neb.integrate_forces(spline_points=spline_points)
    # check the difference between initial and final images
    np.testing.assert_allclose(E[0] - E[-1],
                               forcefit.energies[0] - forcefit.energies[-1],
                               atol=1.0e-10)
    # assert the maximum Energy value is in the middle
    assert np.argmax(E) == spline_points // 2 - 1
    # check the maximum values (barrier value)
    # tolerance value is rather high since the images are not relaxed
    np.testing.assert_allclose(E.max(),
                               forcefit.energies.max(), rtol=2.5e-2)