1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
|
# fmt: off
import numpy as np
from ase.dft.dos import linear_tetrahedron_integration as lti
from ase.dft.kpoints import monkhorst_pack
def test_dos():
"""Check density of states tetrahedron code."""
cell = np.eye(3)
shape = (11, 13, 9)
kpts = np.dot(monkhorst_pack(shape),
np.linalg.inv(cell).T).reshape(shape + (3,))
# Free electron eigenvalues:
eigs = 0.5 * (kpts**2).sum(3)[..., np.newaxis] # new axis for 1 band
energies = np.linspace(0.0001, eigs.max() + 0.0001, 500)
# Do 3-d, 2-d and 1-d:
dos3 = lti(cell, eigs, energies)
eigs = eigs[:, :, 4:5]
dos2 = lti(cell, eigs, energies)
eigs = eigs[5:6]
dos1 = lti(cell, eigs, energies)
# With weights:
dos1w = lti(cell, eigs, energies, np.ones_like(eigs))
assert abs(dos1 - dos1w).max() < 2e-14
# Analytic results:
ref3 = 4 * np.pi * (2 * energies)**0.5
ref2 = 2 * np.pi * np.ones_like(energies)
ref1 = 2 * (2 * energies)**-0.5
mask = np.bitwise_and(energies > 0.02, energies < 0.1)
for dims, (dos, ref) in enumerate([(dos1, ref1), (dos2, ref2),
(dos3, ref3)],
start=1):
error = abs(1 - dos / ref)[mask].max()
norm = dos.sum() * (energies[1] - energies[0])
print(dims, norm, error)
assert error < 0.2, error
assert abs(norm - 1) < 0.11**dims, norm
|