1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
|
------------------------------------------------------------
Invoking FHI-aims ...
When using FHI-aims, please cite the following reference:
Volker Blum, Ralf Gehrke, Felix Hanke, Paula Havu,
Ville Havu, Xinguo Ren, Karsten Reuter, and Matthias Scheffler,
'Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals',
Computer Physics Communications 180, 2175-2196 (2009)
In addition, many other developments in FHI-aims are likely important for
your particular application. A partial list of references is given at the end of
this file. Thank you for giving credit to the authors of these developments.
For any questions about FHI-aims, please visit our slack channel at
https://fhi-aims.slack.com
and our main development and support site at
https://aims-git.rz-berlin.mpg.de .
The latter site, in particular, has a wiki to collect information, as well
as an issue tracker to log discussions, suggest improvements, and report issues
or bugs. https://aims-git.rz-berlin.mpg.de is also the main development site
of the project and all new and updated code versions can be obtained there.
Please send an email to aims-coordinators@fhi-berlin.mpg.de and we will add
you to these sites. They are for you and everyone is welcome there.
------------------------------------------------------------
Date : 20240503, Time : 102441.793
Time zero on CPU 1 : 0.380830000000000E-01 s.
Internal wall clock time zero : 483963881.793 s.
FHI-aims created a unique identifier for this run for later identification
aims_uuid : 5EF06ED7-3255-4F52-A528-3BA5F1DBB34E
Build configuration of the current instance of FHI-aims
-------------------------------------------------------
FHI-aims version : 221103
Commit number : cd81235a3
CMake host system : Darwin-23.1.0
CMake version : 3.24.2
Fortran compiler : /opt/homebrew/bin/mpifort (GNU) version 13.2.0
Fortran compiler flags: -O3 -ffree-line-length-none -fallow-argument-mismatch
C compiler : /opt/homebrew/bin/gcc-13 (GNU) version 13.2.0
C compiler flags : -O3 -g
C++ compiler : /Library/Developer/CommandLineTools/usr/bin/c++ (AppleClang) version 15.0.0.15000040
C++ compiler flags :
HIP compiler :
HIP compiler flags :
HIP GPU arch :
Using MPI
Using ScaLAPACK
Using LibXC
Using i-PI
Using RLSY
Linking against: /Library/Developer/CommandLineTools/SDKs/MacOSX14.0.sdk/usr/lib/libblas.tbd
/Library/Developer/CommandLineTools/SDKs/MacOSX14.0.sdk/usr/lib/liblapack.tbd
/opt/homebrew/lib/libscalapack.dylib
Using 8 parallel tasks.
Task 0 on host flobook-2.local reporting.
Task 1 on host flobook-2.local reporting.
Task 2 on host flobook-2.local reporting.
Task 3 on host flobook-2.local reporting.
Task 4 on host flobook-2.local reporting.
Task 5 on host flobook-2.local reporting.
Task 6 on host flobook-2.local reporting.
Task 7 on host flobook-2.local reporting.
Performing system and environment tests:
| Environment variable OMP_NUM_THREADS correctly set to 1.
| Checking for ScaLAPACK...
| Testing pdtran()...
| All pdtran() tests passed.
Obtaining array dimensions for all initial allocations:
-----------------------------------------------------------------------
Parsing control.in (first pass over file, find array dimensions only).
The contents of control.in will be repeated verbatim below
unless switched off by setting 'verbatim_writeout .false.' .
in the first line of control.in .
-----------------------------------------------------------------------
xc pw-lda
relativistic atomic_zora scalar
spin collinear
output_level MD_light
species H
nucleus 1
mass 1.00794
l_hartree 4
cut_pot 3.5 1.5 1.0
basis_dep_cutoff 1e-4
radial_base 24 5.0
radial_multiplier 1
angular_grids specified
division 0.2421 50
division 0.3822 110
division 0.4799 194
division 0.5341 302
outer_grid 302
valence 1 s 1.
ion_occ 1 s 0.5
hydro 2 s 2.1
hydro 2 p 3.5
-----------------------------------------------------------------------
Completed first pass over input file control.in .
-----------------------------------------------------------------------
-----------------------------------------------------------------------
Parsing geometry.in (first pass over file, find array dimensions only).
The contents of geometry.in will be repeated verbatim below
unless switched off by setting 'verbatim_writeout .false.' .
in the first line of geometry.in .
-----------------------------------------------------------------------
atom 0.0 0.0 0.0 H
-----------------------------------------------------------------------
Completed first pass over input file geometry.in .
-----------------------------------------------------------------------
Basic array size parameters:
| Number of species : 1
| Number of atoms : 1
| Max. basis fn. angular momentum : 1
| Max. atomic/ionic basis occupied n: 1
| Max. number of basis fn. types : 2
| Max. radial fns per species/type : 2
| Max. logarithmic grid size : 1131
| Max. radial integration grid size : 24
| Max. angular integration grid size: 302
| Max. angular grid division number : 8
| Radial grid for Hartree potential : 1131
| Number of spin channels : 2
------------------------------------------------------------
Reading file control.in.
------------------------------------------------------------
XC: Using Perdew-Wang parametrisation of Ceperley-Alder LDA.
Scalar relativistic treatment of kinetic energy: on-site free-atom approximation to ZORA.
Spin treatment: Spin density functional theory - collinear spins.
Requested output level: MD_light
Reading configuration options for species H .
| Found nuclear charge : 1.0000
| Found atomic mass : 1.0079400000000001 amu
| Found l_max for Hartree potential : 4
| Found cutoff potl. onset [A], width [A], scale factor : 3.50000 1.50000 1.00000
| Threshold for basis-dependent cutoff potential is 0.100000E-03
| Found data for basic radial integration grid : 24 points, outermost radius = 5.000 A
| Found multiplier for basic radial grid : 1
| Found angular grid specification: user-specified.
| Specified grid contains 5 separate shells.
| Check grid settings after all constraints further below.
| Found free-atom valence shell : 1 s 1.000
| No ionic wave fns used. Skipping ion_occ.
| Found hydrogenic basis function : 2 s 2.100
| Found hydrogenic basis function : 2 p 3.500
Species H : Missing cutoff potential type.
Defaulting to exp(1/x)/(1-x)^2 type cutoff potential.
Species H : No 'logarithmic' tag. Using default grid for free atom:
| Default logarithmic grid data [bohr] : 0.1000E-03 0.1000E+03 0.1012E+01
Species H : On-site basis accuracy parameter (for Gram-Schmidt orthonormalisation) not specified.
Using default value basis_acc = 0.1000000E-03.
Species H : Using default innermost maximum threshold i_radial= 2 for radial functions.
Species H : Default cutoff onset for free atom density etc. : 0.35000000E+01 AA.
Species H : Basic radial grid will be enhanced according to radial_multiplier = 1, to contain 24 grid points.
Finished reading input file 'control.in'.
------------------------------------------------------------
------------------------------------------------------------
Reading geometry description geometry.in.
------------------------------------------------------------
| Isolated single atom, no quantum-mechanical atoms close by.
Input structure read successfully.
The structure contains 1 atoms, and a total of 1.000 electrons.
Input geometry:
| No unit cell requested.
| Atomic structure:
| Atom x [A] y [A] z [A]
| 1: Species H 0.00000000 0.00000000 0.00000000
Initial moments and charges:
| Atom Moment Charge Species
| 1 (Hund's rule) 0.000000E+00 H
Finished reading input file 'geometry.in'.
Consistency checks for stacksize environment parameter are next.
| Maximum stacksize for task 0: 63 [Mb]
| Maximum stacksize for task 1: 63 [Mb]
| Maximum stacksize for task 2: 63 [Mb]
| Maximum stacksize for task 3: 63 [Mb]
| Maximum stacksize for task 4: 63 [Mb]
| Maximum stacksize for task 5: 63 [Mb]
| Maximum stacksize for task 6: 63 [Mb]
| Maximum stacksize for task 7: 63 [Mb]
*** Stacksize is not set to unlimited. This might cause problems...
| Current stacksize for task 0: 63 [Mb]
| Current stacksize for task 1: 63 [Mb]
| Current stacksize for task 2: 63 [Mb]
| Current stacksize for task 3: 63 [Mb]
| Current stacksize for task 4: 63 [Mb]
| Current stacksize for task 5: 63 [Mb]
| Current stacksize for task 6: 63 [Mb]
| Current stacksize for task 7: 63 [Mb]
Consistency checks for the contents of control.in are next.
MPI_IN_PLACE appears to work with this MPI implementation.
| Keeping use_mpi_in_place .true. (see manual).
Target number of points in a grid batch is not set. Defaulting to 100
Method for grid partitioning is not set. Defaulting to parallel hash+maxmin partitioning.
Batch size limit is not set. Defaulting to 200
By default, will store active basis functions for each batch.
If in need of memory, prune_basis_once .false. can be used to disable this option.
communication_type for Hartree potential was not specified.
Defaulting to calc_hartree .
Defaulting to Pulay charge density mixer.
Pulay mixer: Number of relevant iterations not set.
Defaulting to 8 iterations.
Pulay mixer: Number of initial linear mixing iterations not set.
Defaulting to 0 iterations.
Work space size for distributed Hartree potential not set.
Defaulting to 0.200000E+03 MB.
Mixing parameter for charge density mixing has not been set.
Using default: charge_mix_param = 0.0500.
The mixing parameter will be adjusted in iteration number 2 of the first full s.c.f. cycle only.
Mixing parameter for spin density mixing has not been set.
Using charge_mix_param as default: 0.0500.
Algorithm-dependent basis array size parameters:
| n_max_pulay : 8
Maximum number of self-consistency iterations not provided.
Presetting 1000 iterations.
Presetting 1001 iterations before the initial mixing cycle
is restarted anyway using the sc_init_iter criterion / keyword.
Presetting a factor 1.000 between actual scf density residual
and density convergence criterion sc_accuracy_rho below which sc_init_iter
takes no effect.
* No s.c.f. convergence criteria (sc_accuracy_*) were provided in control.in.
* The run will proceed with a reasonable default guess, but please check whether.
* the s.c.f. cycles seem to take too much or too little time.
Calculation of forces was not defined in control.in. No forces will be calculated.
Geometry relaxation not requested: no relaxation will be performed.
* Notice: The s.c.f. convergence criterion sc_accuracy_rho was not provided.
* We used to stop in this case, and ask the user to provide reasonable
* scf convergence criteria. However, this led some users to employ criteria
* that led to extremely long run times, e.g., for simple relaxation.
* We now preset a default value for sc_accuracy_rho if it is not set.
* You may still wish to check if this setting is too tight or too loose for your needs.
* Based on n_atoms and forces and force-correction status, FHI-aims chose sc_accuracy_rho = 0.800000E-05 .
No accuracy limit for integral partition fn. given. Defaulting to 0.1000E-14.
No threshold value for u(r) in integrations given. Defaulting to 0.1000E-05.
No occupation type (smearing scheme) given. Defaulting to Gaussian broadening, width = 0.1000E-01 eV.
The width will be adjusted in iteration number 2 of the first full s.c.f. cycle only.
S.C.F. convergence parameters will be adjusted in iteration number 2 of the first full s.c.f. cycle only.
No accuracy for occupation numbers given. Defaulting to 0.1000E-12.
No threshold value for occupation numbers given. Defaulting to 0.0000E+00.
No accuracy for fermi level given. Defaulting to 0.1000E-19.
Maximum # of iterations to find E_F not set. Defaulting to 200.
Preferred method for the eigenvalue solver ('KS_method') not specified in 'control.in'.
Calling BLACS routine to test compilation state
Since ScaLAPACK support is enabled, defaulting to ELPA (via ELSI).
Will not use alltoall communication since running on < 1024 CPUs.
Threshold for basis singularities not set.
Default threshold for basis singularities: 0.1000E-04
partition_type (choice of integration weights) for integrals was not specified.
| Using a version of the partition function of Stratmann and coworkers ('stratmann_sparse').
| At each grid point, the set of atoms used to build the partition table is smoothly restricted to
| only those atoms whose free-atom density would be non-zero at that grid point.
Partitioning for Hartree potential was not defined. Using partition_type for integrals.
| Adjusted default value of keyword multip_moments_threshold to: 0.10000000E-11
| This value may affect high angular momentum components of the Hartree potential in periodic systems.
*** WARNING! This is a spin-polarized calculation, but the initial spin density
*** was not specified.
*** In this case (a single, isolated atom), we default to Hund's rules (high spin).
No q(lm)/r^(l+1) cutoff set for long-range Hartree potential.
| Using default value of 0.100000E-09 .
| Verify using the multipole_threshold keyword.
Defaulting to new monopole extrapolation.
Density update method: automatic selection selected.
Charge integration errors on the 3D integration grid will be compensated
by explicit normalization and distribution of residual charges.
Use the "compensate_multipole_errors" flag to change this behaviour.
Set 'collect_eigenvectors' to be '.true.' for use_density_matrix .false.
Consistency checks for the contents of geometry.in are next.
Number of empty states per atom not set in control.in - providing a guess from actual geometry.
| Total number of empty states used during s.c.f. cycle: 2
If you use a very high smearing, use empty_states (per atom!) in control.in to increase this value.
Structure-dependent array size parameters:
| Number of distinct atom types in initial rho : 1
| Maximum number of distinct radial functions : 3
| Maximum number of basis functions : 5
| Number of Kohn-Sham states (occupied + empty): 3
------------------------------------------------------------
------------------------------------------------------------
Preparing all fixed parts of the calculation.
------------------------------------------------------------
Determining machine precision:
2.2250738585072014E-308
Setting up grids for atomic and cluster calculations.
Creating wave function, potential, and density for free atoms.
Runtime choices for atomic solver:
| atomic solver xc : PW-LDA
| compute density gradient: 0
| compute kinetic density : F
Species: H
List of occupied orbitals and eigenvalues:
n l occ energy [Ha] energy [eV]
1 0 1.0000 -0.232378 -6.3233
Spin-polarized or charged system:
Charge density initialized according to selected moments and charges.
Creating spin-polarized density from free atoms.
Species: H
Charge: 0.000000
applying Hund's rules ...
List of occupied orbitals and eigenvalues:
n l energy [Ha] energy [eV] occupation
Spin-up
1 0 -0.268423 -7.3042 1.00000000
Spin-down
1 0 -0.092842 -2.5264 0.00000000
Adding cutoff potential to free-atom effective potential.
Creating fixed part of basis set: Ionic, confined, hydrogenic.
H hydrogenic:
List of hydrogenic basis orbitals:
n l effective z eigenvalue [eV] inner max. [A] outer max. [A] outer radius [A]
2 0 2.100000 -14.9728 0.193243 1.317208 4.583499
2 1 3.500000 -41.6669 0.602369 0.602369 3.723403
Creating atomic-like basis functions for current effective potential.
Species H :
List of atomic basis orbitals and eigenvalues:
n l energy [Ha] energy [eV] outer radius [A]
1 0 -0.232378 -6.3233 4.527807
Assembling full basis from fixed parts.
| Species H : atomic orbital 1 s accepted.
| Species H : hydro orbital 2 s accepted.
| Species H : hydro orbital 2 p accepted.
Basis size parameters after reduction:
| Total number of radial functions: 3
| Total number of basis functions : 5
Per-task memory consumption for arrays in subroutine allocate_ext:
| 0.868920MB.
Testing on-site integration grid accuracy.
| Species Function <phi|h_atom|phi> (log., in eV) <phi|h_atom|phi> (rad., in eV)
1 1 -6.3246251765 -6.3233331181
1 2 14.1313906092 14.1372326594
1 3 25.3615426212 25.3616852158
Preparing densities etc. for the partition functions (integrals / Hartree potential).
Preparations completed.
max(cpu_time) : 0.034 s.
Wall clock time (cpu1) : 0.101 s.
------------------------------------------------------------
Initializing index lists of integration centers etc. from given atomic structure:
| Number of centers in hartree potential : 1
| Number of centers in hartree multipole : 1
| Number of centers in electron density summation: 1
| Number of centers in basis integrals : 1
| Number of centers in integrals : 1
| Number of centers in hamiltonian : 1
------------------------------------------------------------
Begin self-consistency loop: Initialization.
Date : 20240503, Time : 102442.063
------------------------------------------------------------
* Using 8 tasks for Scalapack Eigenvalue solver.
Detailed listing of tasks and assigned k-points:
(for non-periodic systems, the "k-point" denotes an internal label only)
Task 0 k-point 1 on flobook-2.local
Task 1 k-point 1 on flobook-2.local
Task 2 k-point 1 on flobook-2.local
Task 3 k-point 1 on flobook-2.local
Task 4 k-point 1 on flobook-2.local
Task 5 k-point 1 on flobook-2.local
Task 6 k-point 1 on flobook-2.local
Task 7 k-point 1 on flobook-2.local
Tasks: 8 split into 4 X 2 BLACS grid
Calculating block size based on n_basis = 5 max_nprow = 4 max_npcol = 2
ScaLAPACK block size set to: 1
Allocating 0.000 MB for ovlp
Allocating 0.000 MB for ham
Allocating 0.000 MB for eigenvec
Required Scalapack workspace - INTEGER: 1 REAL: 1
Partitioning the integration grid into batches with parallel hashing+maxmin method.
| Number of batches: 64
| Maximal batch size: 96
| Minimal batch size: 57
| Average batch size: 74.062
| Standard deviation of batch sizes: 10.073
Integration load balanced across 8 MPI tasks.
Work distribution over tasks is as follows:
Task 0 has 573 integration points.
Task 1 has 588 integration points.
Task 2 has 592 integration points.
Task 3 has 599 integration points.
Task 4 has 587 integration points.
Task 5 has 592 integration points.
Task 6 has 598 integration points.
Task 7 has 611 integration points.
Initializing partition tables, free-atom densities, potentials, etc. across the integration grid (initialize_grid_storage).
| initialize_grid_storage: Actual outermost partition radius vs. multipole_radius_free
| (-- VB: in principle, multipole_radius_free should be larger, hence this output)
| Species 1: Confinement radius = 4.999999999999999 AA, multipole_radius_free = 5.054417573612229 AA.
| Species 1: outer_partition_radius set to 5.054417573612229 AA .
| The sparse table of interatomic distances needs 0.01 kbyte instead of 0.01 kbyte of memory.
| Net number of integration points: 4740
| of which are non-zero points : 4740
Renormalizing the initial density to the exact electron count on the 3D integration grid.
| Initial density: Formal number of electrons (from input files) : 1.0000000000
| Integrated number of electrons on 3D grid : 0.9999847743
| Charge integration error : -0.0000152257
| Normalization factor for density and gradient : 1.0000152259
Renormalizing the free-atom superposition density to the exact electron count on the 3D integration grid.
| Formal number of electrons (from input files) : 1.0000000000
| Integrated number of electrons on 3D grid : 0.9999751763
| Charge integration error : -0.0000248237
| Normalization factor for density and gradient : 1.0000248243
Obtaining max. number of non-zero basis functions in each batch (get_n_compute_maxes).
| Maximal number of non-zero basis functions: 5 in task 0
| Maximal number of non-zero basis functions: 5 in task 1
| Maximal number of non-zero basis functions: 5 in task 2
| Maximal number of non-zero basis functions: 5 in task 3
| Maximal number of non-zero basis functions: 5 in task 4
| Maximal number of non-zero basis functions: 5 in task 5
| Maximal number of non-zero basis functions: 5 in task 6
| Maximal number of non-zero basis functions: 5 in task 7
Selecting the method for density update.
Loop over occupied states selected for charge density update.
Initialize hartree_potential_storage
Max. number of atoms included in rho_multipole: 1
Evaluating partitioned Hartree potential by multipole expansion.
| Original multipole sum: apparent total charge = -0.301612E-15
| Sum of charges compensated after spline to logarithmic grids = 0.656426E-04
| Analytical far-field extrapolation by fixed multipoles:
| Hartree multipole sum: apparent total charge = -0.276471E-15
-0.28E-15 Summing up the Hartree potential.
Time summed over all CPUs for potential: real work 0.004 s, elapsed 0.020 s
| RMS charge density error from multipole expansion : 0.116820E-16
Allocating 0.000 MB for KS_eigenvector
Integrating Hamiltonian matrix: batch-based integration.
Time summed over all CPUs for integration: real work 0.032 s, elapsed 0.104 s => Consider using load balancing!
Integrating overlap matrix.
Time summed over all CPUs for integration: real work 0.001 s, elapsed 0.004 s
Deallocating overlap matrix.
Updating Kohn-Sham eigenvalues and eigenvectors using ELSI and the ELPA eigensolver.
Obtaining occupation numbers and electronic chemical potential using ELSI.
| Note that, for insulating systems, the printed 'chemical potential' value is not uniquely defined.
| It can be anywhere in the energy gap, as long as it correctly separates occupied and unoccupied states.
| In systems with a gap, the physically relevant chemical potential is the VBM or HOMO.
| Chemical potential (Fermi level): -2.64499990 eV
Writing Kohn-Sham eigenvalues.
Spin-up eigenvalues:
State Occupation Eigenvalue [Ha] Eigenvalue [eV]
1 1.00000 -0.268216 -7.29853
2 0.00000 0.484598 13.18657
3 0.00000 0.894171 24.33164
Spin-down eigenvalues:
State Occupation Eigenvalue [Ha] Eigenvalue [eV]
1 0.00000 -0.086326 -2.34904
2 0.00000 0.697907 18.99100
3 0.00000 1.099897 29.92972
Current spin moment of the entire structure :
| N = N_up - N_down : 1.00
| S : 0.50
| J : 2.00
Highest occupied state (VBM) at -7.29853196 eV
| Occupation number: 1.00000000
| Spin channel: 1
Lowest unoccupied state (CBM) at -2.34904422 eV
| Occupation number: 0.00000000
| Spin channel: 2
Overall HOMO-LUMO gap: 4.94948774 eV.
Calculating total energy contributions from superposition of free atom densities.
Total energy components:
| Sum of eigenvalues : -0.26821612 Ha -7.29853196 eV
| XC energy correction : -0.27864806 Ha -7.58239954 eV
| XC potential correction : 0.36751242 Ha 10.00052189 eV
| Free-atom electrostatic energy: -0.28386635 Ha -7.72439634 eV
| Hartree energy correction : -0.01515829 Ha -0.41247796 eV
| Entropy correction : -0.00000000 Ha -0.00000000 eV
| ---------------------------
| Total energy : -0.47837639 Ha -13.01728391 eV
| Total energy, T -> 0 : -0.47837639 Ha -13.01728391 eV <-- do not rely on this value for anything but (periodic) metals
| Electronic free energy : -0.47837639 Ha -13.01728391 eV
Derived energy quantities:
| Kinetic energy : 0.46812600 Ha 12.73835653 eV
| Electrostatic energy : -0.66785433 Ha -18.17324090 eV
| Energy correction for multipole
| error in Hartree potential : 0.00000000 Ha 0.00000000 eV
| Sum of eigenvalues per atom : -7.29853196 eV
| Total energy (T->0) per atom : -13.01728391 eV <-- do not rely on this value for anything but (periodic) metals
| Electronic free energy per atom : -13.01728391 eV
End scf initialization - timings : max(cpu_time) wall_clock(cpu1)
| Time for scf. initialization : 0.247 s 0.309 s
| Boundary condition initialization : 0.000 s 0.010 s
| Integration : 0.033 s 0.038 s
| Solution of K.-S. eqns. : 0.062 s 0.070 s
| Grid partitioning : 0.005 s 0.008 s
| Preloading free-atom quantities on grid : 0.008 s 0.009 s
| Free-atom superposition energy : 0.001 s 0.001 s
| Total energy evaluation : 0.000 s 0.000 s
Partial memory accounting:
| Current value for overall tracked memory usage:
| Minimum: 0.001 MB (on task 3)
| Maximum: 0.001 MB (on task 0)
| Average: 0.001 MB
| Peak value for overall tracked memory usage:
| Minimum: 0.019 MB (on task 3 after allocating wave)
| Maximum: 0.026 MB (on task 0 after allocating wave)
| Average: 0.021 MB
| Largest tracked array allocation so far:
| Minimum: 0.011 MB (all_coords on task 7)
| Maximum: 0.017 MB (all_coords on task 0)
| Average: 0.014 MB
Note: These values currently only include a subset of arrays which are explicitly tracked.
The "true" memory usage will be greater.
------------------------------------------------------------
Time for density update prior : max(cpu_time) wall_clock(cpu1)
| self-consistency iterative process : 0.003 s 0.003 s
------------------------------------------------------------
Convergence: q app. | density, spin | eigen (eV) | Etot (eV) | . | CPU time | Clock time
SCF 1 : -0.10E-15 | 0.27E-02 0.27E-02 | -0.40E-02 | -0.12E-04 | . | 0.004 s | 0.003 s
SCF 2 : 0.78E-15 | 0.26E-02 0.26E-02 | -0.71E-01 | -0.13E-03 | . | 0.003 s | 0.003 s
SCF 3 : -0.33E-16 | 0.48E-03 0.48E-03 | 0.66E-02 | -0.15E-05 | . | 0.028 s | 0.030 s
SCF 4 : -0.28E-15 | 0.26E-03 0.26E-03 | -0.33E-02 | 0.48E-06 | . | 0.016 s | 0.016 s
SCF 5 : -0.52E-15 | 0.23E-04 0.23E-04 | -0.31E-03 | -0.67E-08 | . | 0.018 s | 0.020 s
SCF 6 : -0.14E-14 | 0.17E-05 0.17E-05 | -0.25E-04 | -0.91E-09 | . | 0.051 s | 0.062 s
Total energy components:
| Sum of eigenvalues : -0.27088501 Ha -7.37115609 eV
| XC energy correction : -0.27581664 Ha -7.50535270 eV
| XC potential correction : 0.36377061 Ha 9.89870188 eV
| Free-atom electrostatic energy: -0.28386635 Ha -7.72439634 eV
| Hartree energy correction : -0.01158407 Ha -0.31521865 eV
| Entropy correction : -0.00000000 Ha -0.00000000 eV
| ---------------------------
| Total energy : -0.47838146 Ha -13.01742189 eV
| Total energy, T -> 0 : -0.47838146 Ha -13.01742189 eV <-- do not rely on this value for anything but (periodic) metals
| Electronic free energy : -0.47838146 Ha -13.01742189 eV
Derived energy quantities:
| Kinetic energy : 0.46543259 Ha 12.66506527 eV
| Electrostatic energy : -0.66799741 Ha -18.17713447 eV
| Energy correction for multipole
| error in Hartree potential : 0.00000000 Ha 0.00000000 eV
| Sum of eigenvalues per atom : -7.37115609 eV
| Total energy (T->0) per atom : -13.01742189 eV <-- do not rely on this value for anything but (periodic) metals
| Electronic free energy per atom : -13.01742189 eV
Current spin moment of the entire structure :
| N = N_up - N_down : 1.00
| S : 0.50
| J : 2.00
Highest occupied state (VBM) at -7.37115609 eV
| Occupation number: 1.00000000
| Spin channel: 1
Lowest unoccupied state (CBM) at -2.43146583 eV
| Occupation number: 0.00000000
| Spin channel: 2
Overall HOMO-LUMO gap: 4.93969026 eV.
| Chemical Potential : -2.72065702 eV
| Note that, for insulating systems, the printed 'chemical potential' value is not uniquely defined.
| It can be anywhere in the energy gap, as long as it correctly separates occupied and unoccupied states.
| In systems with a gap, the physically relevant chemical potential is the VBM or HOMO.
Self-consistency cycle converged.
Energy and forces in a compact form:
| Total energy uncorrected : -0.130174218930995E+02 eV
| Total energy corrected : -0.130174218930995E+02 eV <-- do not rely on this value for anything but (periodic) metals
| Electronic free energy : -0.130174218930995E+02 eV
------------------------------------------------------------------------------
Final output of selected total energy values:
The following output summarizes some interesting total energy values
at the end of a run (AFTER all relaxation, molecular dynamics, etc.).
| Total energy of the DFT / Hartree-Fock s.c.f. calculation : -13.017421893 eV
| Final zero-broadening corrected energy (caution - metals only) : -13.017421893 eV
| For reference only, the value of 1 Hartree used in FHI-aims is : 27.211384500 eV
Before relying on these values, please be sure to understand exactly which
total energy value is referred to by a given number. Different objects may
all carry the same name 'total energy'. Definitions:
Total energy of the DFT / Hartree-Fock s.c.f. calculation:
| Note that this energy does not include ANY quantities calculated after the
| s.c.f. cycle, in particular not ANY RPA, MP2, etc. many-body perturbation terms.
Final zero-broadening corrected energy:
| For metallic systems only, a broadening of the occupation numbers at the Fermi
| level can be extrapolated back to zero broadening by an electron-gas inspired
| formula. For all systems that are not real metals, this value can be
| meaningless and should be avoided.
------------------------------------------------------------------------------
Methods described in the following list of references were used in this FHI-aims run.
If you publish the results, please make sure to cite these reference if they apply.
FHI-aims is an academic code, and for our developers (often, Ph.D. students
and postdocs), scientific credit in the community is essential.
Thank you for helping us!
For any use of FHI-aims, please cite:
Volker Blum, Ralf Gehrke, Felix Hanke, Paula Havu, Ville Havu,
Xinguo Ren, Karsten Reuter, and Matthias Scheffler
'Ab initio molecular simulations with numeric atom-centered orbitals'
Computer Physics Communications 180, 2175-2196 (2009)
http://doi.org/10.1016/j.cpc.2009.06.022
The ELSI infrastructure was used in your run to solve the Kohn-Sham electronic structure.
Please check out http://elsi-interchange.org to learn more.
If scalability is important for your project, please acknowledge ELSI by citing:
V. W-z. Yu, F. Corsetti, A. Garcia, W. P. Huhn, M. Jacquelin, W. Jia,
B. Lange, L. Lin, J. Lu, W. Mi, A. Seifitokaldani, A. Vazquez-Mayagoitia,
C. Yang, H. Yang, and V. Blum
'ELSI: A unified software interface for Kohn-Sham electronic structure solvers'
Computer Physics Communications 222, 267-285 (2018).
http://doi.org/10.1016/j.cpc.2017.09.007
For the real-space grid partitioning and parallelization used in this calculation, please cite:
Ville Havu, Volker Blum, Paula Havu, and Matthias Scheffler,
'Efficient O(N) integration for all-electron electronic structure calculation'
'using numerically tabulated basis functions'
Journal of Computational Physics 228, 8367-8379 (2009).
http://doi.org/10.1016/j.jcp.2009.08.008
Of course, there are many other important community references, e.g., those cited in the
above references. Our list is limited to references that describe implementations in the
FHI-aims code. The reason is purely practical (length of this list) - please credit others as well.
------------------------------------------------------------
Leaving FHI-aims.
Date : 20240503, Time : 102442.558
Computational steps:
| Number of self-consistency cycles : 6
| Number of SCF (re)initializations : 1
Detailed time accounting : max(cpu_time) wall_clock(cpu1)
| Total time : 0.570 s 0.765 s
| Preparation time : 0.034 s 0.101 s
| Boundary condition initalization : 0.000 s 0.010 s
| Grid partitioning : 0.005 s 0.008 s
| Preloading free-atom quantities on grid : 0.008 s 0.009 s
| Free-atom superposition energy : 0.001 s 0.001 s
| Total time for integrations : 0.071 s 0.085 s
| Total time for solution of K.-S. equations : 0.105 s 0.110 s
| Total time for density update : 0.009 s 0.004 s
| Total time for mixing : 0.007 s 0.007 s
| Total time for Hartree multipole update : 0.003 s 0.001 s
| Total time for Hartree multipole sum : 0.024 s 0.027 s
| Total time for total energy evaluation : 0.002 s 0.010 s
| Total time for scaled ZORA corrections : 0.000 s 0.000 s
Partial memory accounting:
| Residual value for overall tracked memory usage across tasks: 0.000000 MB (should be 0.000000 MB)
| Peak values for overall tracked memory usage:
| Minimum: 0.021 MB (on task 3 after allocating wave)
| Maximum: 0.026 MB (on task 0 after allocating wave)
| Average: 0.022 MB
| Largest tracked array allocation:
| Minimum: 0.011 MB (all_coords on task 7)
| Maximum: 0.017 MB (all_coords on task 0)
| Average: 0.014 MB
Note: These values currently only include a subset of arrays which are explicitly tracked.
The "true" memory usage will be greater.
Have a nice day.
------------------------------------------------------------
|