File: issue_3345_spin_md_light.out

package info (click to toggle)
python-ase 3.26.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,484 kB
  • sloc: python: 148,112; xml: 2,728; makefile: 110; javascript: 47
file content (741 lines) | stat: -rw-r--r-- 38,783 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
------------------------------------------------------------
          Invoking FHI-aims ...

          When using FHI-aims, please cite the following reference:

            Volker Blum, Ralf Gehrke, Felix Hanke, Paula Havu,
            Ville Havu, Xinguo Ren, Karsten Reuter, and Matthias Scheffler,
            'Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals',
            Computer Physics Communications 180, 2175-2196 (2009)

          In addition, many other developments in FHI-aims are likely important for
          your particular application. A partial list of references is given at the end of
          this file. Thank you for giving credit to the authors of these developments.

          For any questions about FHI-aims, please visit our slack channel at

            https://fhi-aims.slack.com

          and our main development and support site at

            https://aims-git.rz-berlin.mpg.de .

          The latter site, in particular, has a wiki to collect information, as well
          as an issue tracker to log discussions, suggest improvements, and report issues
          or bugs. https://aims-git.rz-berlin.mpg.de is also the main development site
          of the project and all new and updated code versions can be obtained there.
          Please send an email to aims-coordinators@fhi-berlin.mpg.de and we will add
          you to these sites. They are for you and everyone is welcome there.

------------------------------------------------------------



  Date     :  20240503, Time     :  102441.793
  Time zero on CPU 1             :   0.380830000000000E-01  s.
  Internal wall clock time zero  :           483963881.793  s.

  FHI-aims created a unique identifier for this run for later identification
  aims_uuid : 5EF06ED7-3255-4F52-A528-3BA5F1DBB34E

  Build configuration of the current instance of FHI-aims
  -------------------------------------------------------
  FHI-aims version      : 221103
  Commit number         : cd81235a3
  CMake host system     : Darwin-23.1.0
  CMake version         : 3.24.2
  Fortran compiler      : /opt/homebrew/bin/mpifort (GNU) version 13.2.0
  Fortran compiler flags: -O3 -ffree-line-length-none -fallow-argument-mismatch
  C compiler            : /opt/homebrew/bin/gcc-13 (GNU) version 13.2.0
  C compiler flags      : -O3 -g
  C++ compiler          : /Library/Developer/CommandLineTools/usr/bin/c++ (AppleClang) version 15.0.0.15000040
  C++ compiler flags    :
  HIP compiler          :
  HIP compiler flags    :
  HIP GPU arch          :
  Using MPI
  Using ScaLAPACK
  Using LibXC
  Using i-PI
  Using RLSY
  Linking against: /Library/Developer/CommandLineTools/SDKs/MacOSX14.0.sdk/usr/lib/libblas.tbd
                   /Library/Developer/CommandLineTools/SDKs/MacOSX14.0.sdk/usr/lib/liblapack.tbd
                   /opt/homebrew/lib/libscalapack.dylib

  Using        8 parallel tasks.
  Task        0 on host flobook-2.local reporting.
  Task        1 on host flobook-2.local reporting.
  Task        2 on host flobook-2.local reporting.
  Task        3 on host flobook-2.local reporting.
  Task        4 on host flobook-2.local reporting.
  Task        5 on host flobook-2.local reporting.
  Task        6 on host flobook-2.local reporting.
  Task        7 on host flobook-2.local reporting.

  Performing system and environment tests:
  | Environment variable OMP_NUM_THREADS correctly set to 1.
  | Checking for ScaLAPACK...
  | Testing pdtran()...
  | All pdtran() tests passed.

  Obtaining array dimensions for all initial allocations:
  
  -----------------------------------------------------------------------
  Parsing control.in (first pass over file, find array dimensions only).
  The contents of control.in will be repeated verbatim below
  unless switched off by setting 'verbatim_writeout .false.' .
  in the first line of control.in .
  -----------------------------------------------------------------------
  
  xc                                 pw-lda
  relativistic                       atomic_zora scalar
  spin                               collinear
  output_level                       MD_light
    species        H
      nucleus             1
      mass                1.00794
      l_hartree           4
      cut_pot             3.5  1.5  1.0
      basis_dep_cutoff    1e-4
      radial_base         24 5.0
      radial_multiplier   1
      angular_grids       specified
        division   0.2421   50
        division   0.3822  110
        division   0.4799  194
        division   0.5341  302
        outer_grid  302
      valence      1  s   1.
      ion_occ      1  s   0.5
       hydro 2 s 2.1
       hydro 2 p 3.5
  
  -----------------------------------------------------------------------
  Completed first pass over input file control.in .
  -----------------------------------------------------------------------
  
  
  -----------------------------------------------------------------------
  Parsing geometry.in (first pass over file, find array dimensions only).
  The contents of geometry.in will be repeated verbatim below
  unless switched off by setting 'verbatim_writeout .false.' .
  in the first line of geometry.in .
  -----------------------------------------------------------------------
  
  atom 0.0 0.0 0.0 H
  
  -----------------------------------------------------------------------
  Completed first pass over input file geometry.in .
  -----------------------------------------------------------------------
  

  Basic array size parameters:
  | Number of species                 :        1
  | Number of atoms                   :        1
  | Max. basis fn. angular momentum   :        1
  | Max. atomic/ionic basis occupied n:        1
  | Max. number of basis fn. types    :        2
  | Max. radial fns per species/type  :        2
  | Max. logarithmic grid size        :     1131
  | Max. radial integration grid size :       24
  | Max. angular integration grid size:      302
  | Max. angular grid division number :        8
  | Radial grid for Hartree potential :     1131
  | Number of spin channels           :        2

------------------------------------------------------------
          Reading file control.in.
------------------------------------------------------------
  XC: Using Perdew-Wang parametrisation of Ceperley-Alder LDA.
  Scalar relativistic treatment of kinetic energy: on-site free-atom approximation to ZORA.
  Spin treatment: Spin density functional theory - collinear spins.
  Requested output level: MD_light

  Reading configuration options for species H                   .
  | Found nuclear charge :   1.0000
  | Found atomic mass :    1.0079400000000001      amu
  | Found l_max for Hartree potential  :   4
  | Found cutoff potl. onset [A], width [A], scale factor :    3.50000    1.50000    1.00000
  | Threshold for basis-dependent cutoff potential is   0.100000E-03
  | Found data for basic radial integration grid :    24 points, outermost radius =    5.000 A
  | Found multiplier for basic radial grid :   1
  | Found angular grid specification: user-specified.
  | Specified grid contains     5 separate shells.
  | Check grid settings after all constraints further below.
  | Found free-atom valence shell :  1 s   1.000
  | No ionic wave fns used. Skipping ion_occ.
  | Found hydrogenic basis function :  2 s   2.100
  | Found hydrogenic basis function :  2 p   3.500
  Species H                   : Missing cutoff potential type.
  Defaulting to exp(1/x)/(1-x)^2 type cutoff potential.
  Species H : No 'logarithmic' tag. Using default grid for free atom:
  | Default logarithmic grid data [bohr] : 0.1000E-03 0.1000E+03 0.1012E+01
  Species H : On-site basis accuracy parameter (for Gram-Schmidt orthonormalisation) not specified.
  Using default value basis_acc =  0.1000000E-03.
  Species H                   : Using default innermost maximum threshold i_radial=  2 for radial functions.
  Species H                   : Default cutoff onset for free atom density etc. : 0.35000000E+01 AA.
  Species H                   : Basic radial grid will be enhanced according to radial_multiplier =   1, to contain    24 grid points.

  Finished reading input file 'control.in'.

------------------------------------------------------------


------------------------------------------------------------
          Reading geometry description geometry.in.
------------------------------------------------------------
  | Isolated single atom, no quantum-mechanical atoms close by.
  Input structure read successfully.
  The structure contains        1 atoms,  and a total of          1.000 electrons.

  Input geometry:
  | No unit cell requested.
  | Atomic structure:
  |       Atom                x [A]            y [A]            z [A]
  |    1: Species H             0.00000000        0.00000000        0.00000000

  Initial moments and charges:
  |  Atom   Moment         Charge        Species
  |     1  (Hund's rule)   0.000000E+00   H


  Finished reading input file 'geometry.in'.



  Consistency checks for stacksize environment parameter are next.

  | Maximum stacksize for task 0: 63 [Mb]
  | Maximum stacksize for task 1: 63 [Mb]
  | Maximum stacksize for task 2: 63 [Mb]
  | Maximum stacksize for task 3: 63 [Mb]
  | Maximum stacksize for task 4: 63 [Mb]
  | Maximum stacksize for task 5: 63 [Mb]
  | Maximum stacksize for task 6: 63 [Mb]
  | Maximum stacksize for task 7: 63 [Mb]
   *** Stacksize is not set to unlimited. This might cause problems...
  | Current stacksize for task 0: 63 [Mb]
  | Current stacksize for task 1: 63 [Mb]
  | Current stacksize for task 2: 63 [Mb]
  | Current stacksize for task 3: 63 [Mb]
  | Current stacksize for task 4: 63 [Mb]
  | Current stacksize for task 5: 63 [Mb]
  | Current stacksize for task 6: 63 [Mb]
  | Current stacksize for task 7: 63 [Mb]

  Consistency checks for the contents of control.in are next.

  MPI_IN_PLACE appears to work with this MPI implementation.
  | Keeping use_mpi_in_place .true. (see manual).
  Target number of points in a grid batch is not set. Defaulting to  100
  Method for grid partitioning is not set. Defaulting to parallel hash+maxmin partitioning.
  Batch size limit is not set. Defaulting to    200
  By default, will store active basis functions for each batch.
  If in need of memory, prune_basis_once .false. can be used to disable this option.
  communication_type for Hartree potential was not specified.
  Defaulting to calc_hartree .
  Defaulting to Pulay charge density mixer.
  Pulay mixer: Number of relevant iterations not set.
  Defaulting to    8 iterations.
  Pulay mixer: Number of initial linear mixing iterations not set.
  Defaulting to    0 iterations.
  Work space size for distributed Hartree potential not set.
  Defaulting to   0.200000E+03 MB.
  Mixing parameter for charge density mixing has not been set.
  Using default: charge_mix_param =     0.0500.
  The mixing parameter will be adjusted in iteration number     2 of the first full s.c.f. cycle only.
  Mixing parameter for spin density mixing has not been set.
  Using charge_mix_param as default:     0.0500.
  Algorithm-dependent basis array size parameters:
  | n_max_pulay                         :        8
  Maximum number of self-consistency iterations not provided.
  Presetting  1000 iterations.
  Presetting      1001 iterations before the initial mixing cycle
  is restarted anyway using the sc_init_iter criterion / keyword.
  Presetting a factor      1.000 between actual scf density residual
  and density convergence criterion sc_accuracy_rho below which sc_init_iter
  takes no effect.
 * No s.c.f. convergence criteria (sc_accuracy_*) were provided in control.in.
 * The run will proceed with a reasonable default guess, but please check whether.
 * the s.c.f. cycles seem to take too much or too little time.
  Calculation of forces was not defined in control.in. No forces will be calculated.
  Geometry relaxation not requested: no relaxation will be performed.
 * Notice: The s.c.f. convergence criterion sc_accuracy_rho was not provided.
 * We used to stop in this case, and ask the user to provide reasonable
 * scf convergence criteria. However, this led some users to employ criteria
 * that led to extremely long run times, e.g., for simple relaxation.
 * We now preset a default value for sc_accuracy_rho if it is not set.
 * You may still wish to check if this setting is too tight or too loose for your needs.
 * Based on n_atoms and forces and force-correction status, FHI-aims chose sc_accuracy_rho =  0.800000E-05 .
  No accuracy limit for integral partition fn. given. Defaulting to  0.1000E-14.
  No threshold value for u(r) in integrations given. Defaulting to  0.1000E-05.
  No occupation type (smearing scheme) given. Defaulting to Gaussian broadening, width =  0.1000E-01 eV.
  The width will be adjusted in iteration number     2 of the first full s.c.f. cycle only.
  S.C.F. convergence parameters will be adjusted in iteration number     2 of the first full s.c.f. cycle only.
  No accuracy for occupation numbers given. Defaulting to  0.1000E-12.
  No threshold value for occupation numbers given. Defaulting to  0.0000E+00.
  No accuracy for fermi level given. Defaulting to  0.1000E-19.
  Maximum # of iterations to find E_F not set. Defaulting to  200.
  Preferred method for the eigenvalue solver ('KS_method') not specified in 'control.in'.
  Calling BLACS routine to test compilation state
  Since ScaLAPACK support is enabled, defaulting to ELPA (via ELSI).
  Will not use alltoall communication since running on < 1024 CPUs.
  Threshold for basis singularities not set.
  Default threshold for basis singularities:  0.1000E-04
  partition_type (choice of integration weights) for integrals was not specified.
  | Using a version of the partition function of Stratmann and coworkers ('stratmann_sparse').
  | At each grid point, the set of atoms used to build the partition table is smoothly restricted to
  | only those atoms whose free-atom density would be non-zero at that grid point.
  Partitioning for Hartree potential was not defined. Using partition_type for integrals.
  | Adjusted default value of keyword multip_moments_threshold to:       0.10000000E-11
  | This value may affect high angular momentum components of the Hartree potential in periodic systems.
  *** WARNING! This is a spin-polarized calculation, but the initial spin density
  *** was not specified.
  *** In this case (a single, isolated atom), we default to Hund's rules (high spin).
  No q(lm)/r^(l+1) cutoff set for long-range Hartree potential.
  | Using default value of  0.100000E-09 .
  | Verify using the multipole_threshold keyword.
  Defaulting to new monopole extrapolation.
  Density update method: automatic selection selected.
  Charge integration errors on the 3D integration grid will be compensated
  by explicit normalization and distribution of residual charges.
  Use the "compensate_multipole_errors" flag to change this behaviour.
  Set 'collect_eigenvectors' to be '.true.' for use_density_matrix .false.

  Consistency checks for the contents of geometry.in are next.

  Number of empty states per atom not set in control.in - providing a guess from actual geometry.
  | Total number of empty states used during s.c.f. cycle:        2
  If you use a very high smearing, use empty_states (per atom!) in control.in to increase this value.

  Structure-dependent array size parameters: 
  | Number of distinct atom types in initial rho :        1
  | Maximum number of distinct radial functions  :        3
  | Maximum number of basis functions            :        5
  | Number of Kohn-Sham states (occupied + empty):        3
------------------------------------------------------------

------------------------------------------------------------
          Preparing all fixed parts of the calculation.
------------------------------------------------------------
  Determining machine precision:
     2.2250738585072014E-308
  Setting up grids for atomic and cluster calculations.

  Creating wave function, potential, and density for free atoms.
  Runtime choices for atomic solver:
  | atomic solver xc        : PW-LDA
  | compute density gradient: 0
  | compute kinetic density : F

  Species: H

  List of occupied orbitals and eigenvalues:
    n    l              occ      energy [Ha]    energy [eV]
    1    0           1.0000        -0.232378        -6.3233

  Spin-polarized or charged system:
  Charge density initialized according to selected moments and charges.

  Creating spin-polarized density from free atoms.

  Species: H
  Charge:   0.000000
  applying Hund's rules ...

  List of occupied orbitals and eigenvalues:
    n    l      energy [Ha]    energy [eV]    occupation
  Spin-up
    1    0        -0.268423        -7.3042     1.00000000
  Spin-down
    1    0        -0.092842        -2.5264     0.00000000


  Adding cutoff potential to free-atom effective potential.
  Creating fixed part of basis set: Ionic, confined, hydrogenic.

  H                    hydrogenic:

  List of hydrogenic basis orbitals: 
    n    l      effective z      eigenvalue [eV]  inner max. [A]     outer max. [A]     outer radius [A]   
    2    0         2.100000       -14.9728           0.193243           1.317208           4.583499
    2    1         3.500000       -41.6669           0.602369           0.602369           3.723403

  Creating atomic-like basis functions for current effective potential.

  Species H                   :

  List of atomic basis orbitals and eigenvalues:
    n    l      energy [Ha]    energy [eV]    outer radius [A]
    1    0        -0.232378        -6.3233       4.527807

  Assembling full basis from fixed parts.
  | Species H :   atomic orbital   1 s accepted.
  | Species H :    hydro orbital   2 s accepted.
  | Species H :    hydro orbital   2 p accepted.

  Basis size parameters after reduction:
  | Total number of radial functions:        3
  | Total number of basis functions :        5

  Per-task memory consumption for arrays in subroutine allocate_ext:
  |           0.868920MB.
  Testing on-site integration grid accuracy.
  |  Species  Function  <phi|h_atom|phi> (log., in eV)  <phi|h_atom|phi> (rad., in eV)
           1        1                 -6.3246251765                 -6.3233331181
           1        2                 14.1313906092                 14.1372326594
           1        3                 25.3615426212                 25.3616852158

  Preparing densities etc. for the partition functions (integrals / Hartree potential).

  Preparations completed.
  max(cpu_time)          :      0.034 s.
  Wall clock time (cpu1) :      0.101 s.
------------------------------------------------------------

  Initializing index lists of integration centers etc. from given atomic structure:
  | Number of centers in hartree potential         :         1
  | Number of centers in hartree multipole         :         1
  | Number of centers in electron density summation:         1
  | Number of centers in basis integrals           :         1
  | Number of centers in integrals                 :         1
  | Number of centers in hamiltonian               :         1

------------------------------------------------------------
          Begin self-consistency loop: Initialization.

          Date     :  20240503, Time     :  102442.063
------------------------------------------------------------
  * Using 8 tasks for Scalapack Eigenvalue solver.
  Detailed listing of tasks and assigned k-points:
  (for non-periodic systems, the "k-point" denotes an internal label only)
   Task     0 k-point     1 on flobook-2.local
   Task     1 k-point     1 on flobook-2.local
   Task     2 k-point     1 on flobook-2.local
   Task     3 k-point     1 on flobook-2.local
   Task     4 k-point     1 on flobook-2.local
   Task     5 k-point     1 on flobook-2.local
   Task     6 k-point     1 on flobook-2.local
   Task     7 k-point     1 on flobook-2.local
  Tasks:     8 split into      4 X      2 BLACS grid
  Calculating block size based on n_basis =            5  max_nprow =            4  max_npcol =            2
  ScaLAPACK block size set to:            1
  Allocating        0.000 MB for ovlp
  Allocating        0.000 MB for ham
  Allocating        0.000 MB for eigenvec
  Required Scalapack workspace - INTEGER:            1  REAL:             1
  Partitioning the integration grid into batches with parallel hashing+maxmin method.
  | Number of batches:       64
  | Maximal batch size:      96
  | Minimal batch size:      57
  | Average batch size:      74.062
  | Standard deviation of batch sizes:      10.073

  Integration load balanced across     8 MPI tasks.
  Work distribution over tasks is as follows:
  Task     0 has        573 integration points.
  Task     1 has        588 integration points.
  Task     2 has        592 integration points.
  Task     3 has        599 integration points.
  Task     4 has        587 integration points.
  Task     5 has        592 integration points.
  Task     6 has        598 integration points.
  Task     7 has        611 integration points.
  Initializing partition tables, free-atom densities, potentials, etc. across the integration grid (initialize_grid_storage).
  | initialize_grid_storage: Actual outermost partition radius vs. multipole_radius_free
  | (-- VB: in principle, multipole_radius_free should be larger, hence this output)
  | Species        1: Confinement radius =              4.999999999999999 AA, multipole_radius_free =              5.054417573612229 AA.
  | Species        1: outer_partition_radius set to              5.054417573612229 AA .
  | The sparse table of interatomic distances needs          0.01 kbyte instead of         0.01 kbyte of memory.
  | Net number of integration points:     4740
  | of which are non-zero points    :     4740
  Renormalizing the initial density to the exact electron count on the 3D integration grid.
  | Initial density: Formal number of electrons (from input files) :       1.0000000000
  | Integrated number of electrons on 3D grid     :       0.9999847743
  | Charge integration error                      :      -0.0000152257
  | Normalization factor for density and gradient :       1.0000152259
  Renormalizing the free-atom superposition density to the exact electron count on the 3D integration grid.
  | Formal number of electrons (from input files) :       1.0000000000
  | Integrated number of electrons on 3D grid     :       0.9999751763
  | Charge integration error                      :      -0.0000248237
  | Normalization factor for density and gradient :       1.0000248243
  Obtaining max. number of non-zero basis functions in each batch (get_n_compute_maxes).
  | Maximal number of non-zero basis functions:        5 in task     0
  | Maximal number of non-zero basis functions:        5 in task     1
  | Maximal number of non-zero basis functions:        5 in task     2
  | Maximal number of non-zero basis functions:        5 in task     3
  | Maximal number of non-zero basis functions:        5 in task     4
  | Maximal number of non-zero basis functions:        5 in task     5
  | Maximal number of non-zero basis functions:        5 in task     6
  | Maximal number of non-zero basis functions:        5 in task     7
  Selecting the method for density update.
  Loop over occupied states selected for charge density update.
  Initialize hartree_potential_storage
  Max. number of atoms included in rho_multipole:            1

  Evaluating partitioned Hartree potential by multipole expansion.
  | Original multipole sum: apparent total charge =  -0.301612E-15
  | Sum of charges compensated after spline to logarithmic grids =   0.656426E-04
  | Analytical far-field extrapolation by fixed multipoles:
  | Hartree multipole sum: apparent total charge =  -0.276471E-15
 -0.28E-15  Summing up the Hartree potential.
  Time summed over all CPUs for potential: real work        0.004 s, elapsed        0.020 s
  | RMS charge density error from multipole expansion :   0.116820E-16

  Allocating        0.000 MB for KS_eigenvector
  Integrating Hamiltonian matrix: batch-based integration.
  Time summed over all CPUs for integration: real work        0.032 s, elapsed        0.104 s => Consider using load balancing!
  Integrating overlap matrix.
  Time summed over all CPUs for integration: real work        0.001 s, elapsed        0.004 s
  Deallocating overlap matrix.

  Updating Kohn-Sham eigenvalues and eigenvectors using ELSI and the ELPA eigensolver.

  Obtaining occupation numbers and electronic chemical potential using ELSI.
  | Note that, for insulating systems, the printed 'chemical potential' value is not uniquely defined.
  | It can be anywhere in the energy gap, as long as it correctly separates occupied and unoccupied states.
  | In systems with a gap, the physically relevant chemical potential is the VBM or HOMO.

  | Chemical potential (Fermi level):    -2.64499990 eV
  Writing Kohn-Sham eigenvalues.

  Spin-up eigenvalues:

  State    Occupation    Eigenvalue [Ha]    Eigenvalue [eV]
      1       1.00000          -0.268216           -7.29853
      2       0.00000           0.484598           13.18657
      3       0.00000           0.894171           24.33164

  Spin-down eigenvalues:

  State    Occupation    Eigenvalue [Ha]    Eigenvalue [eV]
      1       0.00000          -0.086326           -2.34904
      2       0.00000           0.697907           18.99100
      3       0.00000           1.099897           29.92972

  Current spin moment of the entire structure :
  | N = N_up - N_down :    1.00
  | S                 :    0.50
  | J                 :    2.00

  Highest occupied state (VBM) at     -7.29853196 eV
  | Occupation number:      1.00000000
  | Spin channel:        1

  Lowest unoccupied state (CBM) at    -2.34904422 eV
  | Occupation number:      0.00000000
  | Spin channel:        2

  Overall HOMO-LUMO gap:      4.94948774 eV.
  Calculating total energy contributions from superposition of free atom densities.

  Total energy components:
  | Sum of eigenvalues            :          -0.26821612 Ha          -7.29853196 eV
  | XC energy correction          :          -0.27864806 Ha          -7.58239954 eV
  | XC potential correction       :           0.36751242 Ha          10.00052189 eV
  | Free-atom electrostatic energy:          -0.28386635 Ha          -7.72439634 eV
  | Hartree energy correction     :          -0.01515829 Ha          -0.41247796 eV
  | Entropy correction            :          -0.00000000 Ha          -0.00000000 eV
  | ---------------------------
  | Total energy                  :          -0.47837639 Ha         -13.01728391 eV
  | Total energy, T -> 0          :          -0.47837639 Ha         -13.01728391 eV  <-- do not rely on this value for anything but (periodic) metals
  | Electronic free energy        :          -0.47837639 Ha         -13.01728391 eV

  Derived energy quantities:
  | Kinetic energy                :           0.46812600 Ha          12.73835653 eV
  | Electrostatic energy          :          -0.66785433 Ha         -18.17324090 eV
  | Energy correction for multipole
  | error in Hartree potential    :           0.00000000 Ha           0.00000000 eV
  | Sum of eigenvalues per atom                           :          -7.29853196 eV
  | Total energy (T->0) per atom                          :         -13.01728391 eV  <-- do not rely on this value for anything but (periodic) metals
  | Electronic free energy per atom                       :         -13.01728391 eV

  End scf initialization - timings             :  max(cpu_time)    wall_clock(cpu1)
  | Time for scf. initialization                :        0.247 s           0.309 s
  | Boundary condition initialization           :        0.000 s           0.010 s
  | Integration                                 :        0.033 s           0.038 s
  | Solution of K.-S. eqns.                     :        0.062 s           0.070 s
  | Grid partitioning                           :        0.005 s           0.008 s
  | Preloading free-atom quantities on grid     :        0.008 s           0.009 s
  | Free-atom superposition energy              :        0.001 s           0.001 s
  | Total energy evaluation                     :        0.000 s           0.000 s

  Partial memory accounting:
  | Current value for overall tracked memory usage:
  |   Minimum:        0.001 MB (on task 3)
  |   Maximum:        0.001 MB (on task 0)
  |   Average:        0.001 MB
  | Peak value for overall tracked memory usage:
  |   Minimum:        0.019 MB (on task 3 after allocating wave)
  |   Maximum:        0.026 MB (on task 0 after allocating wave)
  |   Average:        0.021 MB
  | Largest tracked array allocation so far:
  |   Minimum:        0.011 MB (all_coords on task 7)
  |   Maximum:        0.017 MB (all_coords on task 0)
  |   Average:        0.014 MB
  Note:  These values currently only include a subset of arrays which are explicitly tracked.
  The "true" memory usage will be greater.
------------------------------------------------------------
  Time for density update prior                :  max(cpu_time)    wall_clock(cpu1)
  | self-consistency iterative process          :        0.003 s           0.003 s
------------------------------------------------------------
Convergence:    q app. |  density,  spin     | eigen (eV) | Etot (eV) |             . |       CPU time |     Clock time
  SCF    1 : -0.10E-15 |  0.27E-02  0.27E-02 |  -0.40E-02 | -0.12E-04 |             . |        0.004 s |        0.003 s
  SCF    2 :  0.78E-15 |  0.26E-02  0.26E-02 |  -0.71E-01 | -0.13E-03 |             . |        0.003 s |        0.003 s
  SCF    3 : -0.33E-16 |  0.48E-03  0.48E-03 |   0.66E-02 | -0.15E-05 |             . |        0.028 s |        0.030 s
  SCF    4 : -0.28E-15 |  0.26E-03  0.26E-03 |  -0.33E-02 |  0.48E-06 |             . |        0.016 s |        0.016 s
  SCF    5 : -0.52E-15 |  0.23E-04  0.23E-04 |  -0.31E-03 | -0.67E-08 |             . |        0.018 s |        0.020 s
  SCF    6 : -0.14E-14 |  0.17E-05  0.17E-05 |  -0.25E-04 | -0.91E-09 |             . |        0.051 s |        0.062 s

  Total energy components:
  | Sum of eigenvalues            :          -0.27088501 Ha          -7.37115609 eV
  | XC energy correction          :          -0.27581664 Ha          -7.50535270 eV
  | XC potential correction       :           0.36377061 Ha           9.89870188 eV
  | Free-atom electrostatic energy:          -0.28386635 Ha          -7.72439634 eV
  | Hartree energy correction     :          -0.01158407 Ha          -0.31521865 eV
  | Entropy correction            :          -0.00000000 Ha          -0.00000000 eV
  | ---------------------------
  | Total energy                  :          -0.47838146 Ha         -13.01742189 eV
  | Total energy, T -> 0          :          -0.47838146 Ha         -13.01742189 eV  <-- do not rely on this value for anything but (periodic) metals
  | Electronic free energy        :          -0.47838146 Ha         -13.01742189 eV

  Derived energy quantities:
  | Kinetic energy                :           0.46543259 Ha          12.66506527 eV
  | Electrostatic energy          :          -0.66799741 Ha         -18.17713447 eV
  | Energy correction for multipole
  | error in Hartree potential    :           0.00000000 Ha           0.00000000 eV
  | Sum of eigenvalues per atom                           :          -7.37115609 eV
  | Total energy (T->0) per atom                          :         -13.01742189 eV  <-- do not rely on this value for anything but (periodic) metals
  | Electronic free energy per atom                       :         -13.01742189 eV
  Current spin moment of the entire structure :
  | N = N_up - N_down :    1.00
  | S                 :    0.50
  | J                 :    2.00

  Highest occupied state (VBM) at     -7.37115609 eV
  | Occupation number:      1.00000000
  | Spin channel:        1

  Lowest unoccupied state (CBM) at    -2.43146583 eV
  | Occupation number:      0.00000000
  | Spin channel:        2

  Overall HOMO-LUMO gap:      4.93969026 eV.

  | Chemical Potential                          :    -2.72065702 eV
  | Note that, for insulating systems, the printed 'chemical potential' value is not uniquely defined.
  | It can be anywhere in the energy gap, as long as it correctly separates occupied and unoccupied states.
  | In systems with a gap, the physically relevant chemical potential is the VBM or HOMO.

  Self-consistency cycle converged.


  Energy and forces in a compact form:
  | Total energy uncorrected      :         -0.130174218930995E+02 eV
  | Total energy corrected        :         -0.130174218930995E+02 eV  <-- do not rely on this value for anything but (periodic) metals
  | Electronic free energy        :         -0.130174218930995E+02 eV


------------------------------------------------------------------------------
  Final output of selected total energy values:

  The following output summarizes some interesting total energy values
  at the end of a run (AFTER all relaxation, molecular dynamics, etc.).

  | Total energy of the DFT / Hartree-Fock s.c.f. calculation      :            -13.017421893 eV
  | Final zero-broadening corrected energy (caution - metals only) :            -13.017421893 eV
  | For reference only, the value of 1 Hartree used in FHI-aims is :             27.211384500 eV

  Before relying on these values, please be sure to understand exactly which
  total energy value is referred to by a given number. Different objects may
  all carry the same name 'total energy'. Definitions:

  Total energy of the DFT / Hartree-Fock s.c.f. calculation:
  | Note that this energy does not include ANY quantities calculated after the
  | s.c.f. cycle, in particular not ANY RPA, MP2, etc. many-body perturbation terms.

  Final zero-broadening corrected energy:
  | For metallic systems only, a broadening of the occupation numbers at the Fermi
  | level can be extrapolated back to zero broadening by an electron-gas inspired
  | formula. For all systems that are not real metals, this value can be
  | meaningless and should be avoided.

------------------------------------------------------------------------------
  Methods described in the following list of references were used in this FHI-aims run.
  If you publish the results, please make sure to cite these reference if they apply.
  FHI-aims is an academic code, and for our developers (often, Ph.D. students
  and postdocs), scientific credit in the community is essential.
  Thank you for helping us!

  For any use of FHI-aims, please cite:

    Volker Blum, Ralf Gehrke, Felix Hanke, Paula Havu, Ville Havu,
    Xinguo Ren, Karsten Reuter, and Matthias Scheffler
    'Ab initio molecular simulations with numeric atom-centered orbitals'
    Computer Physics Communications 180, 2175-2196 (2009)
    http://doi.org/10.1016/j.cpc.2009.06.022


  The ELSI infrastructure was used in your run to solve the Kohn-Sham electronic structure.
  Please check out http://elsi-interchange.org to learn more.
  If scalability is important for your project, please acknowledge ELSI by citing:

    V. W-z. Yu, F. Corsetti, A. Garcia, W. P. Huhn, M. Jacquelin, W. Jia,
    B. Lange, L. Lin, J. Lu, W. Mi, A. Seifitokaldani, A. Vazquez-Mayagoitia,
    C. Yang, H. Yang, and V. Blum
    'ELSI: A unified software interface for Kohn-Sham electronic structure solvers'
    Computer Physics Communications 222, 267-285 (2018).
    http://doi.org/10.1016/j.cpc.2017.09.007


  For the real-space grid partitioning and parallelization used in this calculation, please cite:

    Ville Havu, Volker Blum, Paula Havu, and Matthias Scheffler,
    'Efficient O(N) integration for all-electron electronic structure calculation'
    'using numerically tabulated basis functions'
    Journal of Computational Physics 228, 8367-8379 (2009).
    http://doi.org/10.1016/j.jcp.2009.08.008

  Of course, there are many other important community references, e.g., those cited in the
  above references. Our list is limited to references that describe implementations in the
  FHI-aims code. The reason is purely practical (length of this list) - please credit others as well.

------------------------------------------------------------
          Leaving FHI-aims.
          Date     :  20240503, Time     :  102442.558

          Computational steps:
          | Number of self-consistency cycles          :            6
          | Number of SCF (re)initializations          :            1

          Detailed time accounting                     :  max(cpu_time)    wall_clock(cpu1)
          | Total time                                  :        0.570 s           0.765 s
          | Preparation time                            :        0.034 s           0.101 s
          | Boundary condition initalization            :        0.000 s           0.010 s
          | Grid partitioning                           :        0.005 s           0.008 s
          | Preloading free-atom quantities on grid     :        0.008 s           0.009 s
          | Free-atom superposition energy              :        0.001 s           0.001 s
          | Total time for integrations                 :        0.071 s           0.085 s
          | Total time for solution of K.-S. equations  :        0.105 s           0.110 s
          | Total time for density update               :        0.009 s           0.004 s
          | Total time for mixing                       :        0.007 s           0.007 s
          | Total time for Hartree multipole update     :        0.003 s           0.001 s
          | Total time for Hartree multipole sum        :        0.024 s           0.027 s
          | Total time for total energy evaluation      :        0.002 s           0.010 s
          | Total time for scaled ZORA corrections      :        0.000 s           0.000 s

          Partial memory accounting:
          | Residual value for overall tracked memory usage across tasks:     0.000000 MB (should be 0.000000 MB)
          | Peak values for overall tracked memory usage:
          |   Minimum:        0.021 MB (on task 3 after allocating wave)
          |   Maximum:        0.026 MB (on task 0 after allocating wave)
          |   Average:        0.022 MB
          | Largest tracked array allocation:
          |   Minimum:        0.011 MB (all_coords on task 7)
          |   Maximum:        0.017 MB (all_coords on task 0)
          |   Average:        0.014 MB
          Note:  These values currently only include a subset of arrays which are explicitly tracked.
          The "true" memory usage will be greater.

          Have a nice day.
------------------------------------------------------------