File: test_vib.py

package info (click to toggle)
python-ase 3.26.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,484 kB
  • sloc: python: 148,112; xml: 2,728; makefile: 110; javascript: 47
file content (608 lines) | stat: -rw-r--r-- 23,141 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
# fmt: off
"""Test the ase.vibrations.Vibrations object using a harmonic calculator."""
import os
from pathlib import Path

import numpy as np
import pytest
from numpy.testing import assert_array_almost_equal, assert_array_equal

try:
    from numpy.exceptions import ComplexWarning  # NumPy 2.0.0
except ImportError:
    from numpy import ComplexWarning  # type: ignore[attr-defined,no-redef]

import ase.io
from ase import Atoms, units
from ase.build import add_adsorbate, fcc111
from ase.calculators.calculator import compare_atoms
from ase.calculators.qmmm import ForceConstantCalculator
from ase.constraints import FixAtoms, FixCartesian
from ase.thermochemistry import IdealGasThermo
from ase.vibrations import Vibrations, VibrationsData


@pytest.fixture()
def random_dimer():
    rng = np.random.RandomState(42)

    d = 1 + 0.5 * rng.random()
    z_values = rng.randint(1, high=50, size=2)

    hessian = rng.random((6, 6))
    hessian += hessian.T  # Ensure the random Hessian is symmetric

    atoms = Atoms(z_values, [[0, 0, 0], [0, 0, d]])
    ref_atoms = atoms.copy()
    atoms.calc = ForceConstantCalculator(D=hessian,
                                         ref=ref_atoms,
                                         f0=np.zeros((2, 3)))
    return atoms


def test_harmonic_vibrations(testdir):
    """Check the numerics with a trivial case: one atom in harmonic well"""
    rng = np.random.RandomState(42)

    k = rng.random()

    ref_atoms = Atoms('H', positions=np.zeros([1, 3]))
    atoms = ref_atoms.copy()
    mass = atoms.get_masses()[0]

    atoms.calc = ForceConstantCalculator(D=np.eye(3) * k,
                                         ref=ref_atoms,
                                         f0=np.zeros((1, 3)))
    vib = Vibrations(atoms, name='harmonic')
    vib.run()
    vib.read()

    expected_energy = (units._hbar  # In J/s
                       * np.sqrt(k  # In eV/A^2
                                 * units._e  # eV -> J
                                 * units.m**2  # A^-2 -> m^-2
                                 / mass  # in amu
                                 / units._amu  # amu^-1 -> kg^-1
                                 )
                       ) / units._e  # J/s -> eV/s

    assert np.allclose(vib.get_energies(), expected_energy)


def test_frederiksen(testdir, random_dimer):
    # Apply appropriate symmetry to non-"self" terms so that Frederiksen result
    # is not modified by translational symmetrisation step:
    #
    # - We have a 6x6 matrix for the dimer force-constants
    # - On-diagonal 3x3 blocks should by modified by correction
    # - These blocks need to have translational symmetry after correction
    # - So we impose that symmetry on off-diagonal blocks used in correction
    random_dimer.calc.D[:3, 3:] += random_dimer.calc.D[:3, 3:].T
    random_dimer.calc.D[3:, :3] += random_dimer.calc.D[3:, :3].T

    vib = Vibrations(random_dimer, delta=1e-2, nfree=2)
    vib.run()
    vib_data_std = vib.get_vibrations(read_cache=False, method='standard')
    vib_data_frd = vib.get_vibrations(read_cache=False, method='frederiksen')

    # Check Frederiksen option made a difference
    assert not np.allclose(vib_data_std.get_hessian(),
                           vib_data_frd.get_hessian())

    # Check sum rule was violated by original Hessian
    assert not np.allclose(vib_data_std.get_hessian()[0, :, 0, :],
                           -vib_data_std.get_hessian()[0, :, 1, :])

    # And is fixed by Frederiksen scheme
    assert_array_almost_equal(vib_data_frd.get_hessian()[0, :, 0, :],
                              -vib_data_frd.get_hessian()[0, :, 1, :])


def test_consistency_with_vibrationsdata(testdir, random_dimer):
    vib = Vibrations(random_dimer, delta=1e-6, nfree=4)
    vib.run()
    vib_data = vib.get_vibrations()

    assert_array_almost_equal(vib.get_energies(),
                              vib_data.get_energies())

    for mode_index in range(3 * len(vib.atoms)):
        assert_array_almost_equal(vib.get_mode(mode_index),
                                  vib_data.get_modes()[mode_index])

    # Hessian should be close to the ForceConstantCalculator input
    assert_array_almost_equal(random_dimer.calc.D,
                              vib_data.get_hessian_2d(),
                              decimal=6)


def test_json_manipulation(testdir, random_dimer):
    vib = Vibrations(random_dimer, name='interrupt')
    vib.run()

    disp_file = Path('interrupt/cache.1x-.json')
    comb_file = Path('interrupt/combined.json')
    assert disp_file.is_file()
    assert not comb_file.is_file()

    # Should do nothing harmful as files are already split
    # (It used to raise an error but this is no longer implemented.)
    vib.split()

    # Build a combined file
    assert vib.combine() == 13

    # Individual displacements should be gone, combination should exist
    assert not disp_file.is_file()
    assert comb_file.is_file()

    # Not allowed to run after data has been combined
    with pytest.raises(RuntimeError):
        vib.run()
    # But reading is allowed
    vib.read()

    # Splitting should fail if any split file already exists
    with open(disp_file, 'w') as fd:
        fd.write("hello")

    with pytest.raises(AssertionError):
        vib.split()

    os.remove(disp_file)

    # Now split() for real: replace .all.json file with displacements
    vib.split()
    assert disp_file.is_file()
    assert not comb_file.is_file()


def test_vibrations_methods(testdir, random_dimer):
    vib = Vibrations(random_dimer)
    vib.run()
    vib_energies = vib.get_energies()

    for image in vib.iterimages():
        assert len(image) == 2

    thermo = IdealGasThermo(vib_energies=vib_energies, geometry='linear',
                            atoms=vib.atoms, symmetrynumber=2, spin=0)
    thermo.get_gibbs_energy(temperature=298.15, pressure=2 * 101325.,
                            verbose=False)

    logfilename = 'vib.log'

    with open(logfilename, 'w') as fd:
        vib.summary(log=fd)

    with open(logfilename) as fd:
        log_txt = fd.read()
        assert log_txt == '\n'.join(
            VibrationsData._tabulate_from_energies(vib_energies)) + '\n'

    last_mode = vib.get_mode(-1)
    scale = 0.5
    assert_array_almost_equal(vib.show_as_force(-1, scale=scale,
                                                show=False).get_forces(),
                              last_mode * 3 * len(vib.atoms) * scale)

    vib.write_mode(n=3, nimages=5)
    for i in range(3):
        assert not Path(f'vib.{i}.traj').is_file()
    mode_traj = ase.io.read('vib.3.traj', index=':')
    assert len(mode_traj) == 5

    assert_array_almost_equal(mode_traj[0].get_all_distances(),
                              random_dimer.get_all_distances())
    with pytest.raises(AssertionError):
        assert_array_almost_equal(mode_traj[4].get_all_distances(),
                                  random_dimer.get_all_distances())

    assert vib.clean(empty_files=True) == 0
    assert vib.clean() == 13
    assert len(list(vib.iterimages())) == 13

    d = dict(vib.iterdisplace(inplace=False))

    for name, image in vib.iterdisplace(inplace=True):
        assert d[name] == random_dimer


def test_vibrations_restart_dir(testdir, random_dimer):
    vib = Vibrations(random_dimer)
    vib.run()
    freqs = vib.get_frequencies()
    assert freqs is not None

    # write/read the data from another working directory
    atoms = random_dimer.copy()  # This copy() removes the Calculator

    with ase.utils.workdir('run_from_here', mkdir=True):
        vib = Vibrations(atoms, name=str(Path.cwd().parent / 'vib'))
        assert_array_almost_equal(freqs, vib.get_frequencies())
        assert vib.clean() == 13


class TestVibrationsDataStaticMethods:
    @pytest.mark.parametrize('mask,expected_indices',
                             [([True, True, False, True], [0, 1, 3]),
                              ([False, False], []),
                              ([], []),
                              (np.array([True, True]), [0, 1]),
                              (np.array([False, True, True]), [1, 2]),
                              (np.array([], dtype=bool), [])])
    def test_indices_from_mask(self, mask, expected_indices):
        assert VibrationsData.indices_from_mask(mask) == expected_indices

    @pytest.mark.parametrize('fixed_indices,expected_indices',
                             [(2, [0, 1, 3, 4]),
                              ([0, 1, 2, 3, 4], []),
                              ([], [0, 1, 2, 3, 4]),
                              ([0, 1], [2, 3, 4])])
    def test_indices_from_constraint(self, fixed_indices, expected_indices):
        atoms = Atoms('CH4', constraint=FixAtoms(fixed_indices))
        cartesian = Atoms('CH4', constraint=FixCartesian(fixed_indices))
        assert VibrationsData.indices_from_constraints(
            atoms) == expected_indices
        assert VibrationsData.indices_from_constraints(
            cartesian) == expected_indices

    def test_tabulate_energies(self):
        # Test the private classmethod _tabulate_from_energies
        # used by public tabulate() method
        energies = np.array([1., complex(2., 1.), complex(1., 1e-3)])

        table = VibrationsData._tabulate_from_energies(energies, im_tol=1e-2)

        for sep_row in 0, 2, 6:
            assert table[sep_row] == '-' * 21
        assert tuple(table[1].strip().split()) == ('#', 'meV', 'cm^-1')

        expected_rows = [
            # energy in eV should be converted to meV and cm-1
            ('0', '1000.0', '8065.5'),
            # Imaginary component over threshold detected
            ('1', '1000.0i', '8065.5i'),
            # Small imaginary component ignored
            ('2', '1000.0', '8065.5')]

        for row, expected in zip(table[3:6], expected_rows):
            assert tuple(row.split()) == expected

        # ZPE = (1 + 2 + 1) / 2  - currently we keep all real parts
        assert table[7].split()[2] == '2.000'
        assert len(table) == 8

    na2 = Atoms('Na2', cell=[2, 2, 2], positions=[[0, 0, 0],
                                                  [1, 1, 1]])
    na2_image_1 = na2.copy()
    na2_image_1.info.update({'mode#': '0',
                             'frequency_cm-1': 8065.5})
    na2_image_1.arrays['mode'] = np.array([[1., 1., 1.],
                                           [0.5, 0.5, 0.5]])

    @pytest.mark.parametrize('kwargs,expected',
                             [(dict(atoms=na2,
                                    energies=[1.],
                                    modes=np.array([[[1., 1., 1.],
                                                     [0.5, 0.5, 0.5]]])),
                               [na2_image_1])
                              ])
    def test_get_jmol_images(self, kwargs, expected):
        # Test the private staticmethod _get_jmol_images
        # used by the public write_jmol_images() method

        jmol_images = list(VibrationsData._get_jmol_images(**kwargs))
        assert len(jmol_images) == len(expected)

        for image, reference in zip(jmol_images, expected):
            assert compare_atoms(image, reference) == []
            for key, value in reference.info.items():
                if key == 'frequency_cm-1':
                    assert float(image.info[key]) == pytest.approx(value,
                                                                   abs=0.1)
                else:
                    assert image.info[key] == value


@pytest.fixture()
def n2_data():
    return {'atoms': Atoms('N2', positions=[[0., 0., 0.05095057],
                                            [0., 0., 1.04904943]]),
            'hessian': np.array([[[[4.67554672e-03, 0.0, 0.0],
                                   [-4.67554672e-03, 0.0, 0.0]],

                                  [[0.0, 4.67554672e-03, 0.0],
                                  [0.0, -4.67554672e-03, 0.0]],

                                  [[0.0, 0.0, 3.90392599e+01],
                                   [0.0, 0.0, -3.90392599e+01]]],

                                 [[[-4.67554672e-03, 0.0, 0.0],
                                   [4.67554672e-03, 0.0, 0.0]],

                                  [[0.0, -4.67554672e-03, 0.0],
                                   [0.0, 4.67554672e-03, 0.0]],

                                  [[0.0, 0.0, -3.90392599e+01],
                                   [0.0, 0.0, 3.90392599e+01]]]]),
            'ref_frequencies': [0.00000000e+00 + 0.j,
                                6.06775530e-08 + 0.j,
                                3.62010442e-06 + 0.j,
                                1.34737571e+01 + 0.j,
                                1.34737571e+01 + 0.j,
                                1.23118496e+03 + 0.j],
            'ref_zpe': 0.07799427233401508,
            'ref_forces': np.array([[0., 0., -2.26722e-1],
                                    [0., 0., 2.26722e-1]])
            }


@pytest.fixture()
def n2_unstable_data():
    return {'atoms': Atoms('N2', positions=[[0., 0., 0.45],
                                            [0., 0., -0.45]]),
            'hessian': np.array(
                [-5.150829928323684, 0.0, -0.6867385017096544,
                 5.150829928323684, 0.0, 0.6867385017096544, 0.0,
                 -5.158454318599951, 0.0, 0.0, 5.158454318599951, 0.0,
                 -0.6867385017096544, 0.0, 56.65107699250456,
                 0.6867385017096544, 0.0, -56.65107699250456,
                 5.150829928323684, 0.0, 0.6867385017096544,
                 -5.150829928323684, 0.0, -0.6867385017096544, 0.0,
                 5.158454318599951, 0.0, 0.0, -5.158454318599951, 0.0,
                 0.6867385017096544, 0.0, -56.65107699250456,
                 -0.6867385017096544, 0.0, 56.65107699250456
                 ]).reshape((2, 3, 2, 3))
            }


@pytest.fixture()
def n2_vibdata(n2_data):
    return VibrationsData(n2_data['atoms'], n2_data['hessian'])


def test_init(n2_data):
    # Check that init runs without error; properties are checked in other
    # methods using the (identical) n2_vibdata fixture
    VibrationsData(n2_data['atoms'], n2_data['hessian'])


def test_energies_and_modes(n2_data, n2_vibdata):
    energies, _modes = n2_vibdata.get_energies_and_modes()
    assert_array_almost_equal(n2_data['ref_frequencies'],
                              energies / units.invcm,
                              decimal=5)
    assert_array_almost_equal(n2_data['ref_frequencies'],
                              n2_vibdata.get_energies() / units.invcm,
                              decimal=5)
    assert_array_almost_equal(n2_data['ref_frequencies'],
                              n2_vibdata.get_frequencies(),
                              decimal=5)

    assert (n2_vibdata.get_zero_point_energy()
            == pytest.approx(n2_data['ref_zpe']))

    assert n2_vibdata.tabulate() == (
        '\n'.join(VibrationsData._tabulate_from_energies(energies)) + '\n')

    atoms_with_forces = n2_vibdata.show_as_force(-1, show=False)

    try:
        assert_array_almost_equal(atoms_with_forces.get_forces(),
                                  n2_data['ref_forces'])
    except AssertionError:
        # Eigenvectors may be off by a sign change, which is allowed
        assert_array_almost_equal(atoms_with_forces.get_forces(),
                                  -n2_data['ref_forces'])


def test_imaginary_energies(n2_unstable_data):
    vib_data = VibrationsData(n2_unstable_data['atoms'],
                              n2_unstable_data['hessian'])

    assert vib_data.tabulate() == (
        '\n'.join(VibrationsData._tabulate_from_energies(
            vib_data.get_energies()))
        + '\n')


def test_zero_mass(n2_data):
    atoms = n2_data['atoms']
    atoms.set_masses([0., 1.])
    vib_data = VibrationsData(atoms, n2_data['hessian'])
    with pytest.raises(ValueError):
        vib_data.get_energies_and_modes()


def test_new_mass(n2_data, n2_vibdata):
    original_masses = n2_vibdata.get_atoms().get_masses()
    new_masses = original_masses * 3
    new_vib_data = n2_vibdata.with_new_masses(new_masses)
    assert_array_almost_equal(new_vib_data.get_atoms().get_masses(),
                              new_masses)
    assert_array_almost_equal(n2_vibdata.get_energies() / np.sqrt(3),
                              new_vib_data.get_energies())


def test_fixed_atoms(n2_data):
    vib_data = VibrationsData(n2_data['atoms'],
                              n2_data['hessian'][1:, :, 1:, :],
                              indices=[1, ])
    assert vib_data.get_indices() == [1, ]
    assert vib_data.get_mask().tolist() == [False, True]


def test_constrained_atoms(n2_data):
    tmpAtoms = n2_data['atoms'].copy()
    tmpAtoms.set_constraint(FixAtoms(0))
    vib_data = VibrationsData(tmpAtoms,
                              n2_data['hessian'][1:, :, 1:, :])
    assert vib_data.get_indices() == [1, ]
    assert vib_data.get_mask().tolist() == [False, True]


def test_dos(n2_vibdata):
    with pytest.warns(ComplexWarning):
        dos = n2_vibdata.get_dos()
    assert_array_almost_equal(dos.get_energies(),
                              n2_vibdata.get_energies())


def test_pdos(n2_vibdata):
    with pytest.warns(ComplexWarning):
        pdos = n2_vibdata.get_pdos()
    assert_array_almost_equal(pdos[0].get_energies(),
                              n2_vibdata.get_energies())
    assert_array_almost_equal(pdos[1].get_energies(),
                              n2_vibdata.get_energies())
    # 3N states = 6, divided equally over two N atoms = 3.0
    assert sum(pdos[0].get_weights()) == pytest.approx(3.0)


def test_todict(n2_data, n2_vibdata):
    vib_data_dict = n2_vibdata.todict()

    assert vib_data_dict['indices'] is None
    assert_array_almost_equal(vib_data_dict['atoms'].positions,
                              n2_data['atoms'].positions)
    assert_array_almost_equal(vib_data_dict['hessian'],
                              n2_data['hessian'])


def test_dict_roundtrip(n2_vibdata):
    vib_data_dict = n2_vibdata.todict()
    vib_data_roundtrip = VibrationsData.fromdict(vib_data_dict)

    for getter in ('get_atoms',):
        assert (getattr(n2_vibdata, getter)()
                == getattr(vib_data_roundtrip, getter)())
    for array_getter in ('get_hessian', 'get_hessian_2d',
                         'get_mask', 'get_indices'):
        assert_array_almost_equal(
            getattr(n2_vibdata, array_getter)(),
            getattr(vib_data_roundtrip, array_getter)())


@pytest.mark.parametrize('indices, expected_mask',
                         [([1], [False, True]),
                          (None, [True, True])])
def test_dict_indices(n2_vibdata, indices, expected_mask):
    vib_data_dict = n2_vibdata.todict()
    vib_data_dict['indices'] = indices

    # Reduce size of Hessian if necessary
    if indices is not None:
        n_active = len(indices)
        vib_data_dict['hessian'] = (
            np.asarray(vib_data_dict['hessian']
                       )[:n_active, :, :n_active, :].tolist())

    vib_data_fromdict = VibrationsData.fromdict(vib_data_dict)
    assert_array_almost_equal(vib_data_fromdict.get_mask(), expected_mask)


def test_jmol_roundtrip(testdir, n2_data):
    ir_intensities = np.random.RandomState(42).rand(6)

    vib_data = VibrationsData(n2_data['atoms'], n2_data['hessian'])
    jmol_file = 'vib-data.xyz'
    vib_data.write_jmol(jmol_file, ir_intensities=ir_intensities)

    images = ase.io.read(jmol_file, index=':')
    for i, image in enumerate(images):
        assert_array_almost_equal(image.positions,
                                  vib_data.get_atoms().positions)
        assert (image.info['IR_intensity']
                == pytest.approx(ir_intensities[i]))
        assert_array_almost_equal(image.arrays['mode'],
                                  vib_data.get_modes()[i])


def test_bad_hessian(n2_data):
    bad_hessians = (None, 'fish', 1,
                    np.array([1, 2, 3]),
                    np.eye(6),
                    np.array([[[1, 0, 0]],
                              [[0, 0, 1]]]))

    for bad_hessian in bad_hessians:
        with pytest.raises(ValueError):
            VibrationsData(n2_data['atoms'], bad_hessian)


def test_bad_hessian2d(n2_data):
    bad_hessians = (None, 'fish', 1,
                    np.array([1, 2, 3]),
                    n2_data['hessian'],
                    np.array([[[1, 0, 0]],
                              [[0, 0, 1]]]))

    for bad_hessian in bad_hessians:
        with pytest.raises(ValueError):
            VibrationsData.from_2d(n2_data['atoms'], bad_hessian)


def test_vibration_on_surface(testdir):
    "N2 above Ag slab - vibration with frozen molecules"
    ag_slab = fcc111('Ag', (4, 4, 2), a=2)
    n2 = Atoms('N2', positions=[[0., 0., 0.],
                                [0., np.sqrt(2), np.sqrt(2)]])
    add_adsorbate(ag_slab, n2, height=1, position='fcc')

    # Add an interaction between the N atoms
    hessian_bottom_corner = np.zeros((2, 3, 2, 3))
    hessian_bottom_corner[-1, :, -2] = [1, 1, 1]
    hessian_bottom_corner[-2, :, -1] = [1, 1, 1]

    hessian = np.zeros((34, 3, 34, 3))
    hessian[32:, :, 32:, :] = hessian_bottom_corner

    ag_slab.calc = ForceConstantCalculator(hessian.reshape((34 * 3,
                                                            34 * 3)),
                                           ref=ag_slab.copy(),
                                           f0=np.zeros((34, 3)))

    # Check that Vibrations with restricted indices returns correct Hessian
    vibs = Vibrations(ag_slab, indices=[-2, -1])
    vibs.run()
    vibs.read()
    assert len(vibs.get_frequencies()) == 6

    assert_array_almost_equal(vibs.get_vibrations().get_hessian(),
                              hessian_bottom_corner)

    # These should blow up if the vectors don't match number of atoms
    vibs.summary()
    vibs.write_jmol()

    for i in range(6):
        # Frozen atoms should have zero displacement
        assert_array_almost_equal(vibs.get_mode(i)[0], [0., 0., 0.])

        # The N atoms should have finite displacement
        assert np.all(np.any(vibs.get_mode(i)[-2:, :], axis=1))

    # Check that FixAtoms works in the same way
    ag_slab_fixed = ag_slab.copy()
    ag_slab_fixed.calc = ForceConstantCalculator(
        hessian.reshape((34 * 3, 34 * 3)), ref=ag_slab.copy(),
        f0=np.zeros((34, 3))
    )
    ag_slab_fixed.set_constraint(
        FixAtoms(mask=[True] * (len(ag_slab_fixed) - 2) + [False] * 2))
    vibs_fixed_atoms = Vibrations(ag_slab_fixed)
    vibs_fixed_atoms.run()
    vibs_fixed_atoms.read()
    assert_array_equal(vibs_fixed_atoms.indices, np.array([32, 33]))
    assert len(vibs_fixed_atoms.get_frequencies()) == 6
    assert_array_almost_equal(
        vibs.get_frequencies(), vibs_fixed_atoms.get_frequencies()
    )

    # Check that we respect the user
    vibs_fixed_atoms2 = Vibrations(ag_slab_fixed, indices=[0])
    vibs_fixed_atoms2.run()
    vibs_fixed_atoms2.read()
    assert_array_equal(vibs_fixed_atoms2.indices, np.array([0]))
    assert len(vibs_fixed_atoms2.get_frequencies()) == 3