1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
# fmt: off
# flake8: noqa
"""Definition of the XrDebye class.
This module defines the XrDebye class for calculation
of X-ray scattering properties from atomic cluster
using Debye formula.
Also contains routine for calculation of atomic form factors and
X-ray wavelength dict.
"""
from math import acos, cos, exp, pi, sin, sqrt
import numpy as np
from ase.data import atomic_numbers
# Table (1) of
# D. WAASMAIER AND A. KIRFEL, Acta Cryst. (1995). A51, 416-431
waasmaier = {
# a1 b1 a2 b2 a3 b3 a4 b4 a5 b5 c
'C': [2.657506, 14.780758, 1.078079, 0.776775, 1.490909, 42.086843, -4.241070, -0.000294, 0.713791, 0.239535, 4.297983],
'N': [11.893780, 0.000158, 3.277479, 10.232723, 1.858092, 30.344690, 0.858927, 0.656065, 0.912985, 0.217287, -11.804902],
'O': [2.960427, 14.182259, 2.5088111, 5.936858, 0.637053, 0.112726, 0.722838, 34.958481, 1.142756, 0.390240, 0.027014],
'P': [1.950541, 0.908139, 4.146930, 27.044953, 1.494560, 0.071280, 1.522042, 67.520190, 5.729711, 1.981173, 0.155233],
'S': [6.372157, 1.514347, 5.154568, 22.092528, 1.473732, 0.061373, 1.635073, 55.445176, 1.209372, 0.646925, 0.154722],
'Cl': [1.446071, 0.052357, 6.870609, 1.193165, 6.151801, 18.343416, 1.750347, 46.398394, 0.634168, 0.401005, 0.146773],
'Ni': [13.521865, 4.077277, 6.947285, 0.286763, 3.866028, 14.622634, 2.135900, 71.966078, 4.284731, 0.004437, -2.762697],
'Cu': [14.014192, 3.738280, 4.784577, 0.003744, 5.056806, 13.034982, 1.457971, 72.554793, 6.932996, 0.265666, -3.774477],
'Pd': [6.121511, 0.062549, 4.784063, 0.784031, 16.631683, 8.751391, 4.318258, 34.489983, 13.246773, 0.784031, 0.883099],
'Ag': [6.073874, 0.055333, 17.155437, 7.896512, 4.173344, 28.443739, 0.852238, 110.376108, 17.988685, 0.716809, 0.756603],
'Pt': [31.273891, 1.316992, 18.445441, 8.797154, 17.063745, 0.124741, 5.555933, 40.177994, 1.575270, 1.316997, 4.050394],
'Au': [16.777389, 0.122737, 19.317156, 8.621570, 32.979682, 1.256902, 5.595453, 38.008821, 10.576854, 0.000601, -6.279078],
}
wavelengths = {
'CuKa1': 1.5405981,
'CuKa2': 1.54443,
'CuKb1': 1.39225,
'WLa1': 1.47642,
'WLa2': 1.48748
}
class XrDebye:
"""
Class for calculation of XRD or SAXS patterns.
"""
def __init__(self, atoms, wavelength, damping=0.04,
method='Iwasa', alpha=1.01, warn=True):
"""
Initilize the calculation of X-ray diffraction patterns
Parameters:
atoms: ase.Atoms
atoms object for which calculation will be performed.
wavelength: float, Angstrom
X-ray wavelength in Angstrom. Used for XRD and to setup dumpings.
damping : float, Angstrom**2
thermal damping factor parameter (B-factor).
method: {'Iwasa'}
method of calculation (damping and atomic factors affected).
If set to 'Iwasa' than angular damping and q-dependence of
atomic factors are used.
For any other string there will be only thermal damping
and constant atomic factors (`f_a(q) = Z_a`).
alpha: float
parameter for angular damping of scattering intensity.
Close to 1.0 for unplorized beam.
warn: boolean
flag to show warning if atomic factor can't be calculated
"""
self.wavelength = wavelength
self.damping = damping
self.mode = ''
self.method = method
self.alpha = alpha
self.warn = warn
self.twotheta_list = []
self.q_list = []
self.intensity_list = []
self.atoms = atoms
# TODO: setup atomic form factors if method != 'Iwasa'
def set_damping(self, damping):
""" set B-factor for thermal damping """
self.damping = damping
def get(self, s):
r"""Get the powder x-ray (XRD) scattering intensity
using the Debye-Formula at single point.
Parameters:
s: float, in inverse Angstrom
scattering vector value (`s = q / 2\pi`).
Returns:
Intensity at given scattering vector `s`.
"""
pre = exp(-self.damping * s**2 / 2)
if self.method == 'Iwasa':
sinth = self.wavelength * s / 2.
positive = 1. - sinth**2
if positive < 0:
positive = 0
costh = sqrt(positive)
cos2th = cos(2. * acos(costh))
pre *= costh / (1. + self.alpha * cos2th**2)
f = {}
def atomic(symbol):
"""
get atomic factor, using cache.
"""
if symbol not in f:
if self.method == 'Iwasa':
f[symbol] = self.get_waasmaier(symbol, s)
else:
f[symbol] = atomic_numbers[symbol]
return f[symbol]
I = 0.
fa = [] # atomic factors list
for a in self.atoms:
fa.append(atomic(a.symbol))
pos = self.atoms.get_positions() # positions of atoms
fa = np.array(fa) # atomic factors array
for i in range(len(self.atoms)):
vr = pos - pos[i]
I += np.sum(fa[i] * fa * np.sinc(2 * s *
np.sqrt(np.sum(vr * vr, axis=1))))
return pre * I
def get_waasmaier(self, symbol, s):
r"""Scattering factor for free atoms.
Parameters:
symbol: string
atom element symbol.
s: float, in inverse Angstrom
scattering vector value (`s = q / 2\pi`).
Returns:
Intensity at given scattering vector `s`.
Note:
for hydrogen will be returned zero value."""
if symbol == 'H':
# XXXX implement analytical H
return 0
elif symbol in waasmaier:
abc = waasmaier[symbol]
f = abc[10]
s2 = s * s
for i in range(5):
f += abc[2 * i] * exp(-abc[2 * i + 1] * s2)
return f
if self.warn:
print('<xrdebye::get_atomic> Element', symbol, 'not available')
return 0
def calc_pattern(self, x=None, mode='XRD', verbose=False):
r"""
Calculate X-ray diffraction pattern or
small angle X-ray scattering pattern.
Parameters:
x: float array
points where intensity will be calculated.
XRD - 2theta values, in degrees;
SAXS - q values in 1/A
(`q = 2 \pi \cdot s = 4 \pi \sin( \theta) / \lambda`).
If ``x`` is ``None`` then default values will be used.
mode: {'XRD', 'SAXS'}
the mode of calculation: X-ray diffraction (XRD) or
small-angle scattering (SAXS).
Returns:
list of intensities calculated for values given in ``x``.
"""
self.mode = mode.upper()
assert (mode in ['XRD', 'SAXS'])
result = []
if mode == 'XRD':
if x is None:
self.twotheta_list = np.linspace(15, 55, 100)
else:
self.twotheta_list = x
self.q_list = []
if verbose:
print('#2theta\tIntensity')
for twotheta in self.twotheta_list:
s = 2 * sin(twotheta * pi / 180 / 2.0) / self.wavelength
result.append(self.get(s))
if verbose:
print(f'{twotheta:.3f}\t{result[-1]:f}')
elif mode == 'SAXS':
if x is None:
self.twotheta_list = np.logspace(-3, -0.3, 100)
else:
self.q_list = x
self.twotheta_list = []
if verbose:
print('#q\tIntensity')
for q in self.q_list:
s = q / (2 * pi)
result.append(self.get(s))
if verbose:
print(f'{q:.4f}\t{result[-1]:f}')
self.intensity_list = np.array(result)
return self.intensity_list
def write_pattern(self, filename):
""" Save calculated data to file specified by ``filename`` string."""
with open(filename, 'w') as fd:
self._write_pattern(fd)
def _write_pattern(self, fd):
fd.write('# Wavelength = %f\n' % self.wavelength)
if self.mode == 'XRD':
x, y = self.twotheta_list, self.intensity_list
fd.write('# 2theta \t Intesity\n')
elif self.mode == 'SAXS':
x, y = self.q_list, self.intensity_list
fd.write('# q(1/A)\tIntesity\n')
else:
raise Exception('No data available, call calc_pattern() first.')
for i in range(len(x)):
fd.write(f' {x[i]:f}\t{y[i]:f}\n')
def plot_pattern(self, filename=None, show=False, ax=None):
""" Plot XRD or SAXS depending on filled data
Uses Matplotlib to plot pattern. Use *show=True* to
show the figure and *filename='abc.png'* or
*filename='abc.eps'* to save the figure to a file.
Returns:
``matplotlib.axes.Axes`` object."""
import matplotlib.pyplot as plt
if ax is None:
plt.clf() # clear figure
ax = plt.gca()
if self.mode == 'XRD':
x, y = np.array(self.twotheta_list), np.array(self.intensity_list)
ax.plot(x, y / np.max(y), '.-')
ax.set_xlabel('2$\\theta$')
ax.set_ylabel('Intensity')
elif self.mode == 'SAXS':
x, y = np.array(self.q_list), np.array(self.intensity_list)
ax.loglog(x, y / np.max(y), '.-')
ax.set_xlabel('q, 1/Angstr.')
ax.set_ylabel('Intensity')
else:
raise Exception('No data available, call calc_pattern() first')
if show:
plt.show()
if filename is not None:
fig = ax.get_figure()
fig.savefig(filename)
return ax
|