File: xrdebye.py

package info (click to toggle)
python-ase 3.26.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,484 kB
  • sloc: python: 148,112; xml: 2,728; makefile: 110; javascript: 47
file content (291 lines) | stat: -rw-r--r-- 10,025 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# fmt: off

# flake8: noqa
"""Definition of the XrDebye class.

This module defines the XrDebye class for calculation
of X-ray scattering properties from atomic cluster
using Debye formula.
Also contains routine for calculation of atomic form factors and
X-ray wavelength dict.
"""

from math import acos, cos, exp, pi, sin, sqrt

import numpy as np

from ase.data import atomic_numbers

# Table (1) of
# D. WAASMAIER AND A. KIRFEL, Acta Cryst. (1995). A51, 416-431
waasmaier = {
    #       a1         b1         a2         b2         a3         b3          a4         b4         a5         b5         c
    'C': [2.657506, 14.780758, 1.078079, 0.776775, 1.490909, 42.086843, -4.241070, -0.000294, 0.713791, 0.239535, 4.297983],
    'N': [11.893780, 0.000158, 3.277479, 10.232723, 1.858092, 30.344690, 0.858927, 0.656065, 0.912985, 0.217287, -11.804902],
    'O': [2.960427, 14.182259, 2.5088111, 5.936858, 0.637053, 0.112726, 0.722838, 34.958481, 1.142756, 0.390240, 0.027014],
    'P': [1.950541, 0.908139, 4.146930, 27.044953, 1.494560, 0.071280, 1.522042, 67.520190, 5.729711, 1.981173, 0.155233],
    'S': [6.372157, 1.514347, 5.154568, 22.092528, 1.473732, 0.061373, 1.635073, 55.445176, 1.209372, 0.646925, 0.154722],
    'Cl': [1.446071, 0.052357, 6.870609, 1.193165, 6.151801, 18.343416, 1.750347, 46.398394, 0.634168, 0.401005, 0.146773],
    'Ni': [13.521865, 4.077277, 6.947285, 0.286763, 3.866028, 14.622634, 2.135900, 71.966078, 4.284731, 0.004437, -2.762697],
    'Cu': [14.014192, 3.738280, 4.784577, 0.003744, 5.056806, 13.034982, 1.457971, 72.554793, 6.932996, 0.265666, -3.774477],
    'Pd': [6.121511, 0.062549, 4.784063, 0.784031, 16.631683, 8.751391, 4.318258, 34.489983, 13.246773, 0.784031, 0.883099],
    'Ag': [6.073874, 0.055333, 17.155437, 7.896512, 4.173344, 28.443739, 0.852238, 110.376108, 17.988685, 0.716809, 0.756603],
    'Pt': [31.273891, 1.316992, 18.445441, 8.797154, 17.063745, 0.124741, 5.555933, 40.177994, 1.575270, 1.316997, 4.050394],
    'Au': [16.777389, 0.122737, 19.317156, 8.621570, 32.979682, 1.256902, 5.595453, 38.008821, 10.576854, 0.000601, -6.279078],
}

wavelengths = {
    'CuKa1': 1.5405981,
    'CuKa2': 1.54443,
    'CuKb1': 1.39225,
    'WLa1': 1.47642,
    'WLa2': 1.48748
}


class XrDebye:
    """
    Class for calculation of XRD or SAXS patterns.
    """

    def __init__(self, atoms, wavelength, damping=0.04,
                 method='Iwasa', alpha=1.01, warn=True):
        """
        Initilize the calculation of X-ray diffraction patterns

        Parameters:

        atoms: ase.Atoms
            atoms object for which calculation will be performed.

        wavelength: float, Angstrom
            X-ray wavelength in Angstrom. Used for XRD and to setup dumpings.

        damping : float, Angstrom**2
            thermal damping factor parameter (B-factor).

        method: {'Iwasa'}
            method of calculation (damping and atomic factors affected).

            If set to 'Iwasa' than angular damping and q-dependence of
            atomic factors are used.

            For any other string there will be only thermal damping
            and constant atomic factors (`f_a(q) = Z_a`).

        alpha: float
            parameter for angular damping of scattering intensity.
            Close to 1.0 for unplorized beam.

        warn: boolean
            flag to show warning if atomic factor can't be calculated
        """
        self.wavelength = wavelength
        self.damping = damping
        self.mode = ''
        self.method = method
        self.alpha = alpha
        self.warn = warn

        self.twotheta_list = []
        self.q_list = []
        self.intensity_list = []

        self.atoms = atoms
        # TODO: setup atomic form factors if method != 'Iwasa'

    def set_damping(self, damping):
        """ set B-factor for thermal damping """
        self.damping = damping

    def get(self, s):
        r"""Get the powder x-ray (XRD) scattering intensity
        using the Debye-Formula at single point.

        Parameters:

        s: float, in inverse Angstrom
            scattering vector value (`s = q / 2\pi`).

        Returns:
            Intensity at given scattering vector `s`.
        """

        pre = exp(-self.damping * s**2 / 2)

        if self.method == 'Iwasa':
            sinth = self.wavelength * s / 2.
            positive = 1. - sinth**2
            if positive < 0:
                positive = 0
            costh = sqrt(positive)
            cos2th = cos(2. * acos(costh))
            pre *= costh / (1. + self.alpha * cos2th**2)

        f = {}

        def atomic(symbol):
            """
            get atomic factor, using cache.
            """
            if symbol not in f:
                if self.method == 'Iwasa':
                    f[symbol] = self.get_waasmaier(symbol, s)
                else:
                    f[symbol] = atomic_numbers[symbol]
            return f[symbol]

        I = 0.
        fa = []  # atomic factors list
        for a in self.atoms:
            fa.append(atomic(a.symbol))

        pos = self.atoms.get_positions()  # positions of atoms
        fa = np.array(fa)  # atomic factors array

        for i in range(len(self.atoms)):
            vr = pos - pos[i]
            I += np.sum(fa[i] * fa * np.sinc(2 * s *
                        np.sqrt(np.sum(vr * vr, axis=1))))

        return pre * I

    def get_waasmaier(self, symbol, s):
        r"""Scattering factor for free atoms.

        Parameters:

        symbol: string
            atom element symbol.

        s: float, in inverse Angstrom
            scattering vector value (`s = q / 2\pi`).

        Returns:
            Intensity at given scattering vector `s`.

        Note:
            for hydrogen will be returned zero value."""
        if symbol == 'H':
            # XXXX implement analytical H
            return 0
        elif symbol in waasmaier:
            abc = waasmaier[symbol]
            f = abc[10]
            s2 = s * s
            for i in range(5):
                f += abc[2 * i] * exp(-abc[2 * i + 1] * s2)
            return f
        if self.warn:
            print('<xrdebye::get_atomic> Element', symbol, 'not available')
        return 0

    def calc_pattern(self, x=None, mode='XRD', verbose=False):
        r"""
        Calculate X-ray diffraction pattern or
        small angle X-ray scattering pattern.

        Parameters:

        x: float array
            points where intensity will be calculated.
            XRD - 2theta values, in degrees;
            SAXS - q values in 1/A
            (`q = 2 \pi \cdot s = 4 \pi \sin( \theta) / \lambda`).
            If ``x`` is ``None`` then default values will be used.

        mode: {'XRD', 'SAXS'}
            the mode of calculation: X-ray diffraction (XRD) or
            small-angle scattering (SAXS).

        Returns:
            list of intensities calculated for values given in ``x``.
        """
        self.mode = mode.upper()
        assert (mode in ['XRD', 'SAXS'])

        result = []
        if mode == 'XRD':
            if x is None:
                self.twotheta_list = np.linspace(15, 55, 100)
            else:
                self.twotheta_list = x
            self.q_list = []
            if verbose:
                print('#2theta\tIntensity')
            for twotheta in self.twotheta_list:
                s = 2 * sin(twotheta * pi / 180 / 2.0) / self.wavelength
                result.append(self.get(s))
                if verbose:
                    print(f'{twotheta:.3f}\t{result[-1]:f}')
        elif mode == 'SAXS':
            if x is None:
                self.twotheta_list = np.logspace(-3, -0.3, 100)
            else:
                self.q_list = x
            self.twotheta_list = []
            if verbose:
                print('#q\tIntensity')
            for q in self.q_list:
                s = q / (2 * pi)
                result.append(self.get(s))
                if verbose:
                    print(f'{q:.4f}\t{result[-1]:f}')
        self.intensity_list = np.array(result)
        return self.intensity_list

    def write_pattern(self, filename):
        """ Save calculated data to file specified by ``filename`` string."""
        with open(filename, 'w') as fd:
            self._write_pattern(fd)

    def _write_pattern(self, fd):
        fd.write('# Wavelength = %f\n' % self.wavelength)
        if self.mode == 'XRD':
            x, y = self.twotheta_list, self.intensity_list
            fd.write('# 2theta \t Intesity\n')
        elif self.mode == 'SAXS':
            x, y = self.q_list, self.intensity_list
            fd.write('# q(1/A)\tIntesity\n')
        else:
            raise Exception('No data available, call calc_pattern() first.')

        for i in range(len(x)):
            fd.write(f'  {x[i]:f}\t{y[i]:f}\n')

    def plot_pattern(self, filename=None, show=False, ax=None):
        """ Plot XRD or SAXS depending on filled data

        Uses Matplotlib to plot pattern. Use *show=True* to
        show the figure and *filename='abc.png'* or
        *filename='abc.eps'* to save the figure to a file.

        Returns:
            ``matplotlib.axes.Axes`` object."""

        import matplotlib.pyplot as plt

        if ax is None:
            plt.clf()  # clear figure
            ax = plt.gca()

        if self.mode == 'XRD':
            x, y = np.array(self.twotheta_list), np.array(self.intensity_list)
            ax.plot(x, y / np.max(y), '.-')
            ax.set_xlabel('2$\\theta$')
            ax.set_ylabel('Intensity')
        elif self.mode == 'SAXS':
            x, y = np.array(self.q_list), np.array(self.intensity_list)
            ax.loglog(x, y / np.max(y), '.-')
            ax.set_xlabel('q, 1/Angstr.')
            ax.set_ylabel('Intensity')
        else:
            raise Exception('No data available, call calc_pattern() first')

        if show:
            plt.show()
        if filename is not None:
            fig = ax.get_figure()
            fig.savefig(filename)

        return ax