1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
.. module:: ase.data
===============
The data module
===============
Atomic data
===========
This module defines the following variables:
.. data:: atomic_masses
.. data:: atomic_names
.. data:: chemical_symbols
.. data:: covalent_radii
.. data:: cpk_colors
.. data:: reference_states
.. data:: vdw_radii
.. data:: atomic_masses_iupac2016
.. data:: atomic_masses_legacy
.. data:: cohesive_energies
All of these are lists that should be indexed with an atomic number:
>>> from ase.data import atomic_numbers, atomic_names, atomic_masses, covalent_radii
>>> atomic_names[92]
'Uranium'
>>> atomic_masses[2]
4.0026000000000002
.. data:: atomic_numbers
If you don't know the atomic number of some element, then you can look
it up in the :data:`atomic_numbers` dictionary:
>>> atomic_numbers['Cu']
29
>>> covalent_radii[29]
1.3200000000000001
Atomic masses are based on [Meija2016]_ (same array as
:data:`atomic_masses_iupac2016`).
Standard atomic weights are taken from Table 1: "Standard atomic weights
2013", with the uncertainties ignored.
For hydrogen, helium, boron, carbon, nitrogen, oxygen, magnesium, silicon,
sulfur, chlorine, bromine and thallium, where the weights are given as a
range the "conventional" weights are taken from Table 3, and the ranges are
given in the source code comments.
The mass of the most stable isotope (in Table 4) is used for elements
where there the element has no stable isotopes (to avoid NaNs): Tc, Pm,
Po, At, Rn, Fr, Ra, Ac, everything after Np
Atomic masses provided by ASE before 2017 can be accessed in the
:data:`atomic_masses_legacy` member. To recover legacy behaviour an
Atoms object can be modified as:
>>> from ase.data import atomic_masses_legacy
>>> atoms.set_masses(atomic_masses_legacy[atoms.numbers])
The covalent radii are taken from [Cordeo08]_.
The source of the van der Waals radii is given in vdw.py_.
A newer source of van der Waals radii is given in vdw_alvarez.py_. These
radii are taken from [Alvarez13]_.
.. image:: atomic_radii.png
.. [Meija2016] *Atomic weights of the elements 2013
(IUPAC Technical Report).* Meija, J., Coplen, T., Berglund, M., et al.
(2016). Pure and Applied Chemistry, 88(3), pp. 265-291.
Retrieved 30 Nov. 2016, from :doi:`10.1515/pac-2015-0305`
.. [Cordeo08] *Covalent radii revisited*,
Beatriz Cordero, Verónica Gómez, Ana E. Platero-Prats, Marc Revés,
Jorge Echeverría, Eduard Cremades, Flavia Barragán and Santiago Alvarez,
Dalton Trans., 2008, 2832-2838 :doi:`10.1039/B801115J`
.. [Alvarez13] *A cartography of the van der Waals territories*,
Alvarez, S.,
Dalton Trans., 2013, 42, 8617-8636,
:doi:`10.1039/C3DT50599E`
.. _vdw.py: https://gitlab.com/ase/ase/blob/master/ase/data/vdw.py
.. _vdw_alvarez.py: https://gitlab.com/ase/ase/blob/master/ase/data/vdw_alvarez.py
How to extract isotope data from NIST
-------------------------------------
.. autofunction:: ase.data.isotopes.download_isotope_data
.. _molecular-data:
Molecular data
==============
The G1, G2, and G3-databases are available. Example:
>>> from ase.build import molecule
>>> atoms = molecule('H2O')
All molecular members of each database is conveniently contained in a list
of strings (g1, g2, g3), ??? and one can look up the
experimental atomization energy for each molecule.
This is extrapolated from experimental heats of formation at room temperature,
using calculated zero-point energies and thermal corrections.
Example:
>>> from ase.data.g2 import get_atomization_energy
>>> get_atomization_energy('H2O')
232.5799
>>> from ase.units import kcal,mol
>>> get_atomization_energy('H2O')*kcal/mol
10.08561894878958
where the last line converts the experimental atomization energy of H2O
from units of kcal/mol to eV.
Structures for compounds not found in the G1, G2, and G3-databases can
be obtained using the PubChem API integration in the
:func:`pubchem.pubchem_atoms_search` and
:func:`pubchem.pubchem_atoms_conformer_search` functions. You may
search based on common name, chemical identification number(cid),
smiles string, or conformer identification number.
.. autofunction:: ase.data.pubchem.pubchem_atoms_search
.. autofunction:: ase.data.pubchem.pubchem_atoms_conformer_search
examples:
>>> from ase.data.pubchem import pubchem_atoms_search, pubchem_atoms_conformer_search
>>> cumene = pubchem_atoms_search(name='cumene')
>>> benzene = pubchem_atoms_search(cid=241)
>>> ethanol = pubchem_atoms_search(smiles='CCOH')
>>> octane_conformers = pubchem_atoms_conformer_search(name='octane')
To get all the data available on Pubchem use :func:`pubchem.pubchem_search` and
:func:`pubchem.pubchem_conformer_search`.
.. autofunction:: ase.data.pubchem.pubchem_search
.. autofunction:: ase.data.pubchem.pubchem_conformer_search
S22, s26, and s22x5 data
========================
The s22, s26, and s22x5 databases are available in the *s22* module.
Each weakly bonded complex is identified as an entry in a list of strings
(s22, s26, s22x5), and is fully created by a 'create'-function:
>>> from ase.data.s22 import s22, create_s22_system
>>> sys = s22[0]
>>> sys
'Ammonia_dimer'
>>> atoms = create_s22_system(sys)
>>> atoms.get_chemical_symbols()
['N', 'H', 'H', 'H', 'N', 'H', 'H', 'H']
The coupled-cluster interaction energies for the s22 and s26 systems
are retrieved like this:
>>> from ase.data.s22 import s22, get_interaction_energy_s22
>>> get_interaction_energy_s22(s22[0])
-0.1375
in units of eV. For s22 these are not the original energies,
but from more recent work where the same (large) basis set
was used for all complexes, yielding more accurate
coupled-cluster interaction energies.
The s22x5 database expands on the original s22 data by introducing
non-equilibrium geometries for each complex
(0.9, 1.0, 1.2, 1.5, and 2.0 times original intermolecular distance).
However, these calculations were done in accordance with the methods
used in the original s22 work, and so is expected to inherit the
same problems with mixed basis set sizes.
Assuming the interaction energy error due to this is the same in all
5 geometries for each complex, the default s22x5 interaction energies
are therefore corrected with the energy difference between
original and newer energies at the original separation.
Example:
>>> from ase.data.s22 import *
>>> sys1 = s22[0]
>>> sys1
'Ammonia_dimer'
>>> atoms1 = create_s22_system(sys1)
>>> sys2 = s22x5[0]
>>> sys2
'Ammonia_dimer_0.9'
>>> atoms2 = create_s22_system(sys2)
>>> sys3 = s22x5[1]
>>> sys3
'Ammonia_dimer_1.0'
>>> atoms3 = create_s22_system(sys3)
>>> get_interaction_energy_s22(sys1)
-0.1375
>>> get_interaction_energy_s22(sys2)
-0.1375
>>> get_interaction_energy_s22(sys3)
-0.1375
>>> get_interaction_energy_s22x5(sys2)
-0.10549743024963291
>>> get_interaction_energy_s22x5(sys3)
-0.1375
>>> get_interaction_energy_s22x5(sys3,correct_offset=False)
-0.1362
>>> get_interaction_energy_s22x5(sys1,dist=1.0)
-0.1375
>>> get_interaction_energy_s22x5(sys1,dist=0.9)
-0.10549743024963291
>>> get_interaction_energy_s22x5(sys1,dist=0.9,correct_offset=False)
-0.1045
>>> get_number_of_dimer_atoms(sys1)
[4, 4]
>>> get_s22x5_distance(sys2)
-0.25040236345454536
>>> get_s22x5_distance(sys3)
0.0
where sys1 is an s22 complex in the original geometry,
while sys2 and sys3 are two different s22x5 geometries
of the same complex. It is seen that the interaction
energies for an s22 system and its s22x5 equivalent
(indexed '_1.0') does not necessarily match
when the energy offset-correction is turned off.
The last two functions are convenience functions,
giving the number of atoms in the two molecules
constituting a dimer and the relative intermolecular
distance in a dimer
(relative to the '1.0' separation, and in Angstrom),
respectively.
|