File: ga_molecular_crystal_start.py

package info (click to toggle)
python-ase 3.26.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,484 kB
  • sloc: python: 148,112; xml: 2,728; makefile: 110; javascript: 47
file content (69 lines) | stat: -rw-r--r-- 1,756 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from ase import Atoms
from ase.data import atomic_numbers
from ase.ga.data import PrepareDB
from ase.ga.startgenerator import StartGenerator
from ase.ga.utilities import CellBounds, closest_distances_generator

# Number of randomly generated structures
N = 10

# The building blocks
blocks = [('N2', 8)]
# By writing 'N2', the generator will automatically
# get the N2 geometry using ase.build.molecule.

# A guess for the cell volume in Angstrom^3
box_volume = 30.0 * 8

# The cell splitting scheme:
splits = {(2,): 1, (1,): 1}

# The minimal interatomic distances which the
# initial structures must satisfy. We can take these
# a bit larger than usual because these minimal
# distances will only be applied intermolecularly
# (and not intramolecularly):
Z = atomic_numbers['N']
blmin = closest_distances_generator(
    atom_numbers=[Z], ratio_of_covalent_radii=1.3
)

# The bounds for the randomly generated unit cells:
cellbounds = CellBounds(
    bounds={
        'phi': [30, 150],
        'chi': [30, 150],
        'psi': [30, 150],
        'a': [3, 50],
        'b': [3, 50],
        'c': [3, 50],
    }
)

# The familiar 'slab' object, here only providing
# the PBC as there are no atoms or cell vectors
# that need to be applied.
slab = Atoms('', pbc=True)

# create the starting population
sg = StartGenerator(
    slab,
    blocks,
    blmin,
    box_volume=box_volume,
    cellbounds=cellbounds,
    splits=splits,
    number_of_variable_cell_vectors=3,
    test_too_far=False,
)

# Initialize the database
da = PrepareDB(
    db_file_name='gadb.db', simulation_cell=slab, stoichiometry=[Z] * 16
)

# Generate the new structures
# and add them to the database
for i in range(N):
    a = sg.get_new_candidate()
    da.add_unrelaxed_candidate(a)