File: moldyn2.py

package info (click to toggle)
python-ase 3.26.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,484 kB
  • sloc: python: 148,112; xml: 2,728; makefile: 110; javascript: 47
file content (51 lines) | stat: -rw-r--r-- 1,410 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
"""Demonstrates molecular dynamics with constant energy."""

from ase import units
from ase.lattice.cubic import FaceCenteredCubic
from ase.md.velocitydistribution import MaxwellBoltzmannDistribution
from ase.md.verlet import VelocityVerlet

# Use Asap for a huge performance increase if it is installed
use_asap = True

if use_asap:
    from asap3 import EMT

    size = 10
else:
    from ase.calculators.emt import EMT

    size = 3

# Set up a crystal
atoms = FaceCenteredCubic(
    directions=[[1, 0, 0], [0, 1, 0], [0, 0, 1]],
    symbol='Cu',
    size=(size, size, size),
    pbc=True,
)

# Describe the interatomic interactions with the Effective Medium Theory
atoms.calc = EMT()

# Set the momenta corresponding to T=300K
MaxwellBoltzmannDistribution(atoms, temperature_K=300)

# We want to run MD with constant energy using the VelocityVerlet algorithm.
dyn = VelocityVerlet(atoms, 5 * units.fs)  # 5 fs time step.


def printenergy(a=atoms):  # store a reference to atoms in the definition.
    """Function to print the potential, kinetic and total energy."""
    epot = a.get_potential_energy() / len(a)
    ekin = a.get_kinetic_energy() / len(a)
    print(
        'Energy per atom: Epot = %.3feV  Ekin = %.3feV (T=%3.0fK)  '
        'Etot = %.3feV' % (epot, ekin, ekin / (1.5 * units.kB), epot + ekin)
    )


# Now run the dynamics
dyn.attach(printenergy, interval=10)
printenergy()
dyn.run(200)