1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
# fmt: off
"""Prism"""
import warnings
from typing import Sequence, Union
import numpy as np
from ase.geometry import wrap_positions
def calc_box_parameters(cell: np.ndarray) -> np.ndarray:
"""Calculate box parameters
https://docs.lammps.org/Howto_triclinic.html
"""
ax = np.sqrt(cell[0] @ cell[0])
bx = cell[0] @ cell[1] / ax
by = np.sqrt(cell[1] @ cell[1] - bx ** 2)
cx = cell[0] @ cell[2] / ax
cy = (cell[1] @ cell[2] - bx * cx) / by
cz = np.sqrt(cell[2] @ cell[2] - cx ** 2 - cy ** 2)
return np.array((ax, by, cz, bx, cx, cy))
def calc_rotated_cell(cell: np.ndarray) -> np.ndarray:
"""Calculate rotated cell in LAMMPS coordinates
Parameters
----------
cell : np.ndarray
Cell to be rotated.
Returns
-------
rotated_cell : np.ndarray
Rotated cell represented by a lower triangular matrix.
"""
ax, by, cz, bx, cx, cy = calc_box_parameters(cell)
return np.array(((ax, 0.0, 0.0), (bx, by, 0.0), (cx, cy, cz)))
def calc_reduced_cell(
cell: np.ndarray,
pbc: Union[np.ndarray, Sequence[bool]],
) -> np.ndarray:
"""Calculate LAMMPS cell with short lattice basis vectors
The lengths of the second and the third lattice basis vectors, b and c, are
shortened with keeping the same periodicity of the system. b is modified by
adding multiple a vectors, and c is modified by adding first multiple b
vectors and then multiple a vectors.
Parameters
----------
cell : np.ndarray
Cell to be reduced. This must be already a lower triangular matrix.
pbc : Sequence[bool]
True if the system is periodic along the corresponding direction.
Returns
-------
reduced_cell : np.ndarray
Reduced cell. `xx`, `yy`, `zz` are the same as the original cell,
and `abs(xy) <= xx`, `abs(xz) <= xx`, `abs(yz) <= yy`.
"""
# cell 1 (reduced) <- cell 2 (original)
# o-----------------------------/==o-----------------------------/--o
# \ /--/ \ /--/
# \ /--/ \ /--/
# \ 1 /--/ \ 2 /--/
# \ /--/ \ /--/
# \ /--/ \ /--/
# o==/-----------------------------o--/
reduced_cell = cell.copy()
# Order in which off-diagonal elements are checked for strong tilt
# yz is updated before xz so that the latter does not affect the former
flip_order = ((1, 0), (2, 1), (2, 0))
for i, j in flip_order:
if not pbc[j]:
continue
ratio = reduced_cell[i, j] / reduced_cell[j, j]
if abs(ratio) > 0.5:
reduced_cell[i] -= reduced_cell[j] * np.round(ratio)
return reduced_cell
class Prism:
"""The representation of the unit cell in LAMMPS
The main purpose of the prism-object is to create suitable string
representations of prism limits and atom positions within the prism.
Parameters
----------
cell : np.ndarray
Cell in ASE coordinate system.
pbc : one or three bool
Periodic boundary conditions flags.
reduce_cell : bool
If True, the LAMMPS cell is reduced for short lattice basis vectors.
The atomic positions are always wraped into the reduced cell,
regardress of `wrap` in `vector_to_lammps` and `vector_to_ase`.
tolerance : float
Precision for skewness test.
Methods
-------
vector_to_lammps
Rotate vectors from ASE to LAMMPS coordinates.
Positions can be further wrapped into the LAMMPS cell by `wrap=True`.
vector_to_ase
Rotate vectors from LAMMPS to ASE coordinates.
Positions can be further wrapped into the LAMMPS cell by `wrap=True`.
Notes
-----
LAMMPS prefers triangular matrixes without a strong tilt.
Therefore the 'Prism'-object contains three coordinate systems:
- ase_cell (the simulated system in the ASE coordination system)
- lammps_tilt (ase-cell rotated to be an lower triangular matrix)
- lammps_cell (same volume as tilted cell, but reduce edge length)
The translation between 'ase_cell' and 'lammps_tilt' is done with a
rotation matrix 'rot_mat'. (Mathematically this is a QR decomposition.)
The transformation between 'lammps_tilt' and 'lammps_cell' is done by
changing the off-diagonal elements.
Depending on the option `reduce`, vectors in ASE coordinates are
transformed either `lammps_tilt` or `lammps_cell`.
The vector conversion can fail as depending on the simulation run LAMMPS
might have changed the simulation box significantly. This is for example a
problem with hexagonal cells. LAMMPS might also wrap atoms across periodic
boundaries, which can lead to problems for example NEB calculations.
"""
# !TODO: derive tolerance from cell-dimensions
def __init__(
self,
cell: np.ndarray,
pbc: Union[bool, np.ndarray] = True,
reduce_cell: bool = False,
tolerance: float = 1.0e-8,
):
# rot_mat * lammps_tilt^T = ase_cell^T
# => lammps_tilt * rot_mat^T = ase_cell
# => lammps_tilt = ase_cell * rot_mat
# LAMMPS requires positive diagonal elements of the triangular matrix.
# The diagonals of `lammps_tilt` are always positive by construction.
self.lammps_tilt = calc_rotated_cell(cell)
self.rot_mat = np.linalg.solve(self.lammps_tilt, cell).T
self.ase_cell = cell
self.tolerance = tolerance
self.pbc = tuple(np.zeros(3, bool) + pbc)
self.lammps_cell = calc_reduced_cell(self.lammps_tilt, self.pbc)
self.is_reduced = reduce_cell
@property
def cell(self) -> np.ndarray:
return self.lammps_cell if self.is_reduced else self.lammps_tilt
def get_lammps_prism(self) -> np.ndarray:
"""Return box parameters of the rotated cell in LAMMPS coordinates
Returns
-------
np.ndarray
xhi - xlo, yhi - ylo, zhi - zlo, xy, xz, yz
"""
return self.cell[(0, 1, 2, 1, 2, 2), (0, 1, 2, 0, 0, 1)]
def update_cell(self, lammps_cell: np.ndarray) -> np.ndarray:
"""Rotate new LAMMPS cell into ASE coordinate system
Parameters
----------
lammps_cell : np.ndarray
New Cell in LAMMPS coordinates received after executing LAMMPS
Returns
-------
np.ndarray
New cell in ASE coordinates
"""
# Transformation: integer matrix
# lammps_cell * transformation = lammps_tilt
transformation = np.linalg.solve(self.lammps_cell, self.lammps_tilt)
if self.is_reduced:
self.lammps_cell = lammps_cell
self.lammps_tilt = lammps_cell @ transformation
else:
self.lammps_tilt = lammps_cell
self.lammps_cell = calc_reduced_cell(self.lammps_tilt, self.pbc)
# try to detect potential flips in lammps
# (lammps minimizes the cell-vector lengths)
new_ase_cell = self.lammps_tilt @ self.rot_mat.T
# assuming the cell changes are mostly isotropic
new_vol = np.linalg.det(new_ase_cell)
old_vol = np.linalg.det(self.ase_cell)
test_residual = self.ase_cell.copy()
test_residual *= (new_vol / old_vol) ** (1.0 / 3.0)
test_residual -= new_ase_cell
if any(
np.linalg.norm(test_residual, axis=1)
> 0.5 * np.linalg.norm(self.ase_cell, axis=1)
):
warnings.warn(
"Significant simulation cell changes from LAMMPS detected. "
"Backtransformation to ASE might fail!"
)
return new_ase_cell
def vector_to_lammps(
self,
vec: np.ndarray,
wrap: bool = False,
) -> np.ndarray:
"""Rotate vectors from ASE to LAMMPS coordinates
Parameters
----------
vec : np.ndarray
Vectors in ASE coordinates to be rotated into LAMMPS coordinates
wrap : bool
If True, the vectors are wrapped into the cell
Returns
-------
np.array
Vectors in LAMMPS coordinates
"""
# !TODO: right eps-limit
# lammps might not like atoms outside the cell
if wrap or self.is_reduced:
return wrap_positions(
vec @ self.rot_mat,
cell=self.cell,
pbc=self.pbc,
eps=1e-18,
)
return vec @ self.rot_mat
def vector_to_ase(
self,
vec: np.ndarray,
wrap: bool = False,
) -> np.ndarray:
"""Rotate vectors from LAMMPS to ASE coordinates
Parameters
----------
vec : np.ndarray
Vectors in LAMMPS coordinates to be rotated into ASE coordinates
wrap : bool
If True, the vectors are wrapped into the cell
Returns
-------
np.ndarray
Vectors in ASE coordinates
"""
if wrap or self.is_reduced:
# fractional in `lammps_tilt` (the same shape as ASE cell)
fractional = np.linalg.solve(self.lammps_tilt.T, vec.T).T
# wrap into 0 to 1 for periodic directions
fractional -= np.floor(fractional) * self.pbc
# Cartesian coordinates wrapped into `lammps_tilt`
vec = fractional @ self.lammps_tilt
# rotate back to the ASE cell
return vec @ self.rot_mat.T
def tensor2_to_ase(self, tensor: np.ndarray) -> np.ndarray:
"""Rotate a second order tensor from LAMMPS to ASE coordinates
Parameters
----------
tensor : np.ndarray
Tensor in LAMMPS coordinates to be rotated into ASE coordinates
Returns
-------
np.ndarray
Tensor in ASE coordinates
"""
return self.rot_mat @ tensor @ self.rot_mat.T
def is_skewed(self) -> bool:
"""Test if the lammps cell is skewed, i.e., monoclinic or triclinic.
Returns
-------
bool
True if the lammps cell is skewed.
"""
cell_sq = self.cell ** 2
on_diag = np.sum(np.diag(cell_sq))
off_diag = np.sum(np.tril(cell_sq, -1))
return off_diag / on_diag > self.tolerance
|