1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
# fmt: off
import numpy as np
from ase.calculators.calculator import Calculator, all_changes
from ase.neighborlist import neighbor_list as ase_neighbor_list
from ase.stress import full_3x3_to_voigt_6_stress
def fcut(r: np.ndarray, r0: float, r1: float) -> np.ndarray:
"""Piecewise quintic C^{2,1} regular polynomial for use as a smooth cutoff.
Ported from JuLIP.jl.
https://github.com/JuliaMolSim/JuLIP.jl/blob/master/src/cutoffs.jl
https://en.wikipedia.org/wiki/Smoothstep
Parameters
----------
r : np.ndarray
Distances between atoms.
r0 : float
Inner cutoff radius.
r1 : float
Outder cutoff radius.
Returns
-------
np.ndarray
Sigmoid-like function smoothly interpolating (r0, 1) and (r1, 0).
"""""
s = 1.0 - (r - r0) / (r1 - r0)
return (s >= 1.0) + ((s > 0.0) & (s < 1.0)) * (
6.0 * s**5 - 15.0 * s**4 + 10.0 * s**3
)
def fcut_d(r: np.ndarray, r0: float, r1: float) -> np.ndarray:
"""Derivative of fcut() function defined above."""
s = 1.0 - (r - r0) / (r1 - r0)
return -(
((s > 0.0) & (s < 1.0))
* (30.0 * s**4 - 60.0 * s**3 + 30.0 * s**2)
/ (r1 - r0)
)
class MorsePotential(Calculator):
"""Morse potential."""
implemented_properties = [
'energy', 'energies', 'free_energy', 'forces', 'stress',
]
default_parameters = {'epsilon': 1.0,
'rho0': 6.0,
'r0': 1.0,
'rcut1': 1.9,
'rcut2': 2.7}
nolabel = True
def __init__(self, neighbor_list=ase_neighbor_list, **kwargs):
r"""
The pairwise energy between atoms *i* and *j* is given by
.. math::
V_{ij} = \epsilon \left(
\mathrm{e}^{-2 \rho_0 (r_{ij} / r_0 - 1)}
- 2 \mathrm{e}^{- \rho_0 (r_{ij} / r_0 - 1)}
\right)
Parameters
----------
epsilon : float, default 1.0
Absolute minimum depth.
r0 : float, default 1.0
Minimum distance.
rho0 : float, default 6.0
Exponential prefactor.
The force constant in the potential minimum is given by
.. math::
k = 2 \epsilon \left(\frac{\rho_0}{r_0}\right)^2.
rcut1 : float, default 1.9
Distance starting a smooth cutoff normalized by ``r0``.
rcut2 : float, default 2.7
Distance ending a smooth cutoff normalized by ``r0``.
neighbor_list : callable, optional
neighbor_list function compatible with
ase.neighborlist.neighbor_list
Notes
-----
The default values are chosen to be similar as Lennard-Jones.
"""
self.neighbor_list = neighbor_list
Calculator.__init__(self, **kwargs)
def calculate(self, atoms=None, properties=['energy'],
system_changes=all_changes):
Calculator.calculate(self, atoms, properties, system_changes)
epsilon = self.parameters['epsilon']
rho0 = self.parameters['rho0']
r0 = self.parameters['r0']
rcut1 = self.parameters['rcut1'] * r0
rcut2 = self.parameters['rcut2'] * r0
number_of_atoms = len(self.atoms)
forces = np.zeros((number_of_atoms, 3))
i, _j, d, D = self.neighbor_list('ijdD', atoms, rcut2)
dhat = (D / d[:, None]).T
expf = np.exp(rho0 * (1.0 - d / r0))
cutoff_fn = fcut(d, rcut1, rcut2)
d_cutoff_fn = fcut_d(d, rcut1, rcut2)
pairwise_energies = epsilon * expf * (expf - 2.0)
self.results['energies'] = np.bincount(
i,
weights=0.5 * (pairwise_energies * cutoff_fn),
minlength=number_of_atoms,
)
self.results['energy'] = self.results['energies'].sum()
self.results['free_energy'] = self.results['energy']
# derivatives of `pair_energies` with respect to `d`
de = (-2.0 * epsilon * rho0 / r0) * expf * (expf - 1.0)
# smoothened `de`
de = de * cutoff_fn + pairwise_energies * d_cutoff_fn
de_vec = (de * dhat).T
for dim in range(3):
forces[:, dim] = np.bincount(
i,
weights=de_vec[:, dim],
minlength=number_of_atoms,
)
self.results['forces'] = forces
if self.atoms.cell.rank == 3:
stress = 0.5 * (D.T @ de_vec) / self.atoms.get_volume()
self.results['stress'] = full_3x3_to_voigt_6_stress(stress)
|