File: singlepoint.py

package info (click to toggle)
python-ase 3.26.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,484 kB
  • sloc: python: 148,112; xml: 2,728; makefile: 110; javascript: 47
file content (296 lines) | stat: -rw-r--r-- 8,841 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# fmt: off

from functools import cached_property

import numpy as np

from ase.calculators.calculator import (
    Calculator,
    PropertyNotImplementedError,
    PropertyNotPresent,
    all_properties,
)
from ase.outputs import Properties


class SinglePointCalculator(Calculator):
    """Special calculator for a single configuration.

    Used to remember the energy, force and stress for a given
    configuration.  If the positions, atomic numbers, unit cell, or
    boundary conditions are changed, then asking for
    energy/forces/stress will raise an exception."""

    name = 'unknown'

    def __init__(self, atoms, **results):
        """Save energy, forces, stress, ... for the current configuration."""
        Calculator.__init__(self)
        self.results = {}
        for property, value in results.items():
            assert property in all_properties, property
            if value is None:
                continue
            if property in ['energy', 'magmom', 'free_energy']:
                self.results[property] = value
            else:
                self.results[property] = np.array(value, float)
        self.atoms = atoms.copy()

    def __str__(self):
        tokens = []
        for key, val in sorted(self.results.items()):
            if np.isscalar(val):
                txt = f'{key}={val}'
            else:
                txt = f'{key}=...'
            tokens.append(txt)
        return '{}({})'.format(self.__class__.__name__, ', '.join(tokens))

    def get_property(self, name, atoms=None, allow_calculation=True):
        if atoms is None:
            atoms = self.atoms
        if name not in self.results or self.check_state(atoms):
            if allow_calculation:
                raise PropertyNotImplementedError(
                    f'The property "{name}" is not available.')
            return None

        result = self.results[name]
        if isinstance(result, np.ndarray):
            result = result.copy()
        return result


class SinglePointKPoint:
    def __init__(self, weight, s, k, eps_n=None, f_n=None):
        self.weight = weight
        self.s = s  # spin index
        self.k = k  # k-point index
        if eps_n is None:
            eps_n = []
        self.eps_n = eps_n
        if f_n is None:
            f_n = []
        self.f_n = f_n


def arrays_to_kpoints(eigenvalues, occupations, weights):
    """Helper function for building SinglePointKPoints.

    Convert eigenvalue, occupation, and weight arrays to list of
    SinglePointKPoint objects."""
    nspins, nkpts, _nbands = eigenvalues.shape
    assert eigenvalues.shape == occupations.shape
    assert len(weights) == nkpts
    kpts = []
    for s in range(nspins):
        for k in range(nkpts):
            kpt = SinglePointKPoint(
                weight=weights[k], s=s, k=k,
                eps_n=eigenvalues[s, k], f_n=occupations[s, k])
            kpts.append(kpt)
    return kpts


class SinglePointDFTCalculator(SinglePointCalculator):
    def __init__(self, atoms,
                 efermi=None, bzkpts=None, ibzkpts=None, bz2ibz=None,
                 kpts=None,
                 **results):
        self.bz_kpts = bzkpts
        self.ibz_kpts = ibzkpts
        self.bz2ibz = bz2ibz
        self.eFermi = efermi

        SinglePointCalculator.__init__(self, atoms, **results)
        self.kpts = kpts

    def get_fermi_level(self):
        """Return the Fermi-level(s)."""
        return self.eFermi

    def get_bz_to_ibz_map(self):
        return self.bz2ibz

    def get_bz_k_points(self):
        """Return the k-points."""
        return self.bz_kpts

    def get_number_of_spins(self):
        """Return the number of spins in the calculation.

        Spin-paired calculations: 1, spin-polarized calculation: 2."""
        if self.kpts is not None:
            nspin = set()
            for kpt in self.kpts:
                nspin.add(kpt.s)
            return len(nspin)
        return None

    def get_number_of_bands(self):
        values = {len(kpt.eps_n) for kpt in self.kpts}
        if not values:
            return None
        elif len(values) == 1:
            return values.pop()
        else:
            raise RuntimeError('Multiple array sizes')

    def get_spin_polarized(self):
        """Is it a spin-polarized calculation?"""
        nos = self.get_number_of_spins()
        if nos is not None:
            return nos == 2
        return None

    def get_ibz_k_points(self):
        """Return k-points in the irreducible part of the Brillouin zone."""
        return self.ibz_kpts

    def get_kpt(self, kpt=0, spin=0):
        if self.kpts is not None:
            counter = 0
            for kpoint in self.kpts:
                if kpoint.s == spin:
                    if kpt == counter:
                        return kpoint
                    counter += 1
        return None

    def get_k_point_weights(self):
        """ Retunrs the weights of the k points """
        if self.kpts is not None:
            weights = []
            for kpoint in self.kpts:
                if kpoint.s == 0:
                    weights.append(kpoint.weight)
            return np.array(weights)
        return None

    def get_occupation_numbers(self, kpt=0, spin=0):
        """Return occupation number array."""
        kpoint = self.get_kpt(kpt, spin)
        if kpoint is not None:
            if len(kpoint.f_n):
                return kpoint.f_n
        return None

    def get_eigenvalues(self, kpt=0, spin=0):
        """Return eigenvalue array."""
        kpoint = self.get_kpt(kpt, spin)
        if kpoint is not None:
            return kpoint.eps_n
        return None

    def get_homo_lumo(self):
        """Return HOMO and LUMO energies."""
        if self.kpts is None:
            raise RuntimeError('No kpts')
        eH = -np.inf
        eL = np.inf
        for spin in range(self.get_number_of_spins()):
            homo, lumo = self.get_homo_lumo_by_spin(spin)
            eH = max(eH, homo)
            eL = min(eL, lumo)
        return eH, eL

    def get_homo_lumo_by_spin(self, spin=0):
        """Return HOMO and LUMO energies for a given spin."""
        if self.kpts is None:
            raise RuntimeError('No kpts')
        for kpt in self.kpts:
            if kpt.s == spin:
                break
        else:
            raise RuntimeError(f'No k-point with spin {spin}')
        if self.eFermi is None:
            raise RuntimeError('Fermi level is not available')
        eH = -1.e32
        eL = 1.e32
        for kpt in self.kpts:
            if kpt.s == spin:
                for e in kpt.eps_n:
                    if e <= self.eFermi:
                        eH = max(eH, e)
                    else:
                        eL = min(eL, e)
        return eH, eL

    def properties(self) -> Properties:
        return OutputPropertyWrapper(self).properties()


def propertygetter(func):
    from functools import wraps

    @wraps(func)
    def getter(self):
        value = func(self)
        if value is None:
            raise PropertyNotPresent(func.__name__)
        return value
    return cached_property(getter)


class OutputPropertyWrapper:
    def __init__(self, calc):
        self.calc = calc

    @propertygetter
    def nspins(self):
        return self.calc.get_number_of_spins()

    @propertygetter
    def nbands(self):
        return self.calc.get_number_of_bands()

    @propertygetter
    def nkpts(self):
        return len(self.calc.kpts) // self.nspins

    def _build_eig_occ_array(self, getter):
        arr = np.empty((self.nspins, self.nkpts, self.nbands))
        for s in range(self.nspins):
            for k in range(self.nkpts):
                value = getter(spin=s, kpt=k)
                if value is None:
                    return None
                arr[s, k, :] = value
        return arr

    @propertygetter
    def eigenvalues(self):
        return self._build_eig_occ_array(self.calc.get_eigenvalues)

    @propertygetter
    def occupations(self):
        return self._build_eig_occ_array(self.calc.get_occupation_numbers)

    @propertygetter
    def fermi_level(self):
        return self.calc.get_fermi_level()

    @propertygetter
    def kpoint_weights(self):
        return self.calc.get_k_point_weights()

    @propertygetter
    def ibz_kpoints(self):
        return self.calc.get_ibz_k_points()

    def properties(self) -> Properties:
        dct = {}
        for name in ['eigenvalues', 'occupations', 'fermi_level',
                     'kpoint_weights', 'ibz_kpoints']:
            try:
                value = getattr(self, name)
            except PropertyNotPresent:
                pass
            else:
                dct[name] = value

        for name, value in self.calc.results.items():
            dct[name] = value

        return Properties(dct)