File: tersoff.py

package info (click to toggle)
python-ase 3.26.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,484 kB
  • sloc: python: 148,112; xml: 2,728; makefile: 110; javascript: 47
file content (576 lines) | stat: -rw-r--r-- 18,914 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, List, Tuple, Type, Union

import numpy as np

from ase.calculators.calculator import Calculator, all_changes
from ase.neighborlist import NeighborList
from ase.stress import full_3x3_to_voigt_6_stress

__author__ = 'Stefan Bringuier <stefanbringuier@gmail.com>'
__description__ = 'LAMMPS-style native Tersoff potential for ASE'

# Maximum/minimum exponents for numerical stability
# in bond order calculation
_MAX_EXP_ARG = 69.0776e0
_MIN_EXP_ARG = -69.0776e0


@dataclass
class TersoffParameters:
    """Parameters for 3 element Tersoff potential interaction.

    Can be instantiated with either positional or keyword arguments:
        TersoffParameters(1.0, 2.0, ...) or
        TersoffParameters(m=1.0, gamma=2.0, ...)
    """

    m: float
    gamma: float
    lambda3: float
    c: float
    d: float
    h: float
    n: float
    beta: float
    lambda2: float
    B: float
    R: float
    D: float
    lambda1: float
    A: float

    @classmethod
    def from_list(cls, params: List[float]) -> 'TersoffParameters':
        """Create TersoffParameters from a list of 14 parameter values."""
        if len(params) != 14:
            raise ValueError(f'Expected 14 parameters, got {len(params)}')
        return cls(*map(float, params))


class Tersoff(Calculator):
    """ASE Calculator for Tersoff interatomic potential.

    .. versionadded:: 3.25.0
    """

    implemented_properties = [
        'free_energy',
        'energy',
        'energies',
        'forces',
        'stress',
    ]

    def __init__(
        self,
        parameters: Dict[Tuple[str, str, str], TersoffParameters],
        skin: float = 0.3,
        **kwargs,
    ) -> None:
        """
        Parameters
        ----------
        parameters : dict
            Mapping element combinations to TersoffParameters objects::

                {
                    ('A', 'B', 'C'): TersoffParameters(
                        m, gamma, lambda3, c, d, h, n,
                        beta, lambda2, B, R, D, lambda1, A),
                    ...
                }

            where ('A', 'B', 'C') are the elements involved in the interaction.
        skin : float, default 0.3
            The skin distance for neighbor list calculations.
        **kwargs : dict
            Additional parameters to be passed to
            :class:`~ase.calculators.Calculator`.

        """
        Calculator.__init__(self, **kwargs)
        self.cutoff_skin = skin
        self.parameters = parameters

    @classmethod
    def from_lammps(
        cls: Type['Tersoff'],
        potential_file: Union[str, Path],
        skin: float = 0.3,
        **kwargs,
    ) -> 'Tersoff':
        """Make :class:`Tersoff` from a LAMMPS-style Tersoff potential file.

        Parameters
        ----------
        potential_file : str or Path
            The path to a LAMMPS-style Tersoff potential file.
        skin : float, default 0.3
            The skin distance for neighbor list calculations.
        **kwargs : dict
            Additional parameters to be passed to the
            ASE Calculator constructor.

        Returns
        -------
        :class:`Tersoff`
            Initialized Tersoff calculator with parameters from the file.

        """
        parameters = cls.read_lammps_format(potential_file)
        return cls(parameters=parameters, skin=skin, **kwargs)

    @staticmethod
    def read_lammps_format(
        potential_file: Union[str, Path],
    ) -> Dict[Tuple[str, str, str], TersoffParameters]:
        """Read the Tersoff potential parameters from a LAMMPS-style file.

        Parameters
        ----------
        potential_file : str or Path
            Path to the LAMMPS-style Tersoff potential file

        Returns
        -------
        dict
            Dictionary mapping element combinations to TersoffParameters objects

        """
        block_size = 17
        with Path(potential_file).open('r', encoding='utf-8') as fd:
            content = (
                ''.join(
                    [line for line in fd if not line.strip().startswith('#')]
                )
                .replace('\n', ' ')
                .split()
            )

        if len(content) % block_size != 0:
            raise ValueError(
                'The potential file does not have the correct LAMMPS format.'
            )

        parameters: Dict[Tuple[str, str, str], TersoffParameters] = {}
        for i in range(0, len(content), block_size):
            block = content[i : i + block_size]
            e1, e2, e3 = block[0], block[1], block[2]
            current_elements = (e1, e2, e3)
            params = map(float, block[3:])
            parameters[current_elements] = TersoffParameters(*params)

        return parameters

    def set_parameters(
        self,
        key: Tuple[str, str, str],
        params: TersoffParameters = None,
        **kwargs,
    ) -> None:
        """Update parameters for a specific element combination.

        Parameters
        ----------
        key: Tuple[str, str, str]
            The element combination key of the parameters to be updated
        params: TersoffParameters, optional
            A TersoffParameters instance to completely replace the parameters
        **kwargs:
            Individual parameter values to update, e.g. R=2.9

        """
        if key not in self.parameters:
            raise KeyError(f"Key '{key}' not found in parameters.")

        if params is not None:
            if kwargs:
                raise ValueError('Cannot provide both params and kwargs.')
            self.parameters[key] = params
        else:
            for name, value in kwargs.items():
                if not hasattr(self.parameters[key], name):
                    raise ValueError(f'Invalid parameter name: {name}')
                setattr(self.parameters[key], name, value)

    def _update_nl(self, atoms) -> None:
        """Update the neighbor list with the parameter R+D cutoffs.

        Parameters
        ----------
        atoms: ase.Atoms
            The atoms to calculate the neighbor list for.

        Notes
        -----
        The cutoffs are determined by the parameters of the Tersoff potential.
        Each atom's cutoff is based on the R+D values from the parameter set
        where that atom's element appears first in the key tuple.

        """
        # Get cutoff for each atom based on its element type
        cutoffs = []

        for symbol in atoms.symbols:
            # Find first parameter set, element is the first slot
            param_key = next(
                key for key in self.parameters.keys() if key[0] == symbol
            )
            params = self.parameters[param_key]
            cutoffs.append(params.R + params.D)

        self.nl = NeighborList(
            cutoffs,
            skin=self.cutoff_skin,
            self_interaction=False,
            bothways=True,
        )

        self.nl.update(atoms)

    def calculate(
        self,
        atoms=None,
        properties=None,
        system_changes=all_changes,
    ) -> None:
        """Calculate energy, forces, and stress.

        Notes
        -----
        The force and stress are calculated regardless if they are
        requested, despite some additional overhead cost,
        therefore they are always stored in the results dict.

        """
        Calculator.calculate(self, atoms, properties, system_changes)

        # Rebuild neighbor list when any relevant system changes occur
        checks = {'positions', 'numbers', 'cell', 'pbc'}
        if any(change in checks for change in system_changes) or not hasattr(
            self, 'nl'
        ):
            self._update_nl(atoms)

        self.results = {}
        energies = np.zeros(len(atoms))
        forces = np.zeros((len(atoms), 3))
        virial = np.zeros((3, 3))

        # Duplicates atoms.get_distances() functionality, but uses
        # neighbor list's pre-computed offsets for efficiency in a
        # tight force-calculation loop rather than recompute MIC
        for i in range(len(atoms)):
            self._calc_atom_contribution(i, energies, forces, virial)

        self.results['energies'] = energies
        self.results['energy'] = self.results['free_energy'] = energies.sum()
        self.results['forces'] = forces
        # Virial to stress (i.e., eV/A^3)
        if self.atoms.cell.rank == 3:
            stress = virial / self.atoms.get_volume()
            self.results['stress'] = full_3x3_to_voigt_6_stress(stress)

    def _calc_atom_contribution(
        self,
        idx_i: int,
        energies: np.ndarray,
        forces: np.ndarray,
        virial: np.ndarray,
    ) -> None:
        """Calculate the contributions of a single atom to the properties.

        This function calculates the energy, force, and stress on atom i
        by looking at i-j pair interactions and the modification made by
        the bond order term bij with includes 3-body interaction i-j-k.

        Parameters
        ----------
        idx_i: int
            Index of atom i
        energies: array_like
            Site energies to be updated.
        forces: array_like
            Forces to be updated.
        virial: array_like
            Virial tensor to be updated.

        """
        indices, offsets = self.nl.get_neighbors(idx_i)
        vectors = self.atoms.positions[indices]
        vectors += offsets @ self.atoms.cell
        vectors -= self.atoms.positions[idx_i]
        distances = np.sqrt(np.add.reduce(vectors**2, axis=1))

        type_i = self.atoms.symbols[idx_i]
        for j, (idx_j, abs_rij, rij) in enumerate(
            zip(indices, distances, vectors)
        ):
            type_j = self.atoms.symbols[idx_j]
            key = (type_i, type_j, type_j)
            params = self.parameters[key]

            rij_hat = rij / abs_rij

            fc = self._calc_fc(abs_rij, params.R, params.D)
            if fc == 0.0:
                continue

            zeta = self._calc_zeta(type_i, j, indices, distances, vectors)
            bij = self._calc_bij(zeta, params.beta, params.n)
            bij_d = self._calc_bij_d(zeta, params.beta, params.n)

            repulsive = params.A * np.exp(-params.lambda1 * abs_rij)
            attractive = -params.B * np.exp(-params.lambda2 * abs_rij)

            # distribute the pair energy evenly to be consistent with LAMMPS
            energies[idx_i] += 0.25 * fc * (repulsive + bij * attractive)
            energies[idx_j] += 0.25 * fc * (repulsive + bij * attractive)

            dfc = self._calc_fc_d(abs_rij, params.R, params.D)
            rep_deriv = -params.lambda1 * repulsive
            att_deriv = -params.lambda2 * attractive

            tmp = dfc * (repulsive + bij * attractive)
            tmp += fc * (rep_deriv + bij * att_deriv)

            # derivative with respect to the position of atom j
            grad = 0.5 * tmp * rij_hat

            forces[idx_i] += grad
            forces[idx_j] -= grad

            virial += np.outer(grad, rij)

            for k, idx_k in enumerate(indices):
                if k == j:
                    continue

                type_k = self.atoms.symbols[idx_k]
                key = (type_i, type_j, type_k)
                params = self.parameters[key]

                if distances[k] > params.R + params.D:
                    continue

                rik = vectors[k]

                dztdri, dztdrj, dztdrk = self._calc_zeta_d(rij, rik, params)

                gradi = 0.5 * fc * bij_d * dztdri * attractive
                gradj = 0.5 * fc * bij_d * dztdrj * attractive
                gradk = 0.5 * fc * bij_d * dztdrk * attractive

                forces[idx_i] -= gradi
                forces[idx_j] -= gradj
                forces[idx_k] -= gradk

                virial += np.outer(gradj, rij)
                virial += np.outer(gradk, rik)

    def _calc_bij(self, zeta: float, beta: float, n: float) -> float:
        """Calculate the bond order ``bij`` between atoms ``i`` and ``j``."""
        tmp = beta * zeta
        return (1.0 + tmp**n) ** (-1.0 / (2.0 * n))

    def _calc_bij_d(self, zeta: float, beta: float, n: float) -> float:
        """Calculate the derivative of ``bij`` with respect to ``zeta``."""
        tmp = beta * zeta
        return (
            -0.5
            * (1.0 + tmp**n) ** (-1.0 - (1.0 / (2.0 * n)))
            * (beta * tmp ** (n - 1.0))
        )

    def _calc_zeta(
        self,
        type_i: str,
        j: int,
        neighbors: np.ndarray,
        distances: np.ndarray,
        vectors: np.ndarray,
    ) -> float:
        """Calculate ``zeta_ij``."""
        idx_j = neighbors[j]
        type_j = self.atoms.symbols[idx_j]
        abs_rij = distances[j]

        zeta = 0.0

        for k, idx_k in enumerate(neighbors):
            if k == j:
                continue

            type_k = self.atoms.symbols[idx_k]
            key = (type_i, type_j, type_k)
            params = self.parameters[key]

            abs_rik = distances[k]
            if abs_rik > params.R + params.D:
                continue

            costheta = np.dot(vectors[j], vectors[k]) / (abs_rij * abs_rik)
            fc_ik = self._calc_fc(abs_rik, params.R, params.D)

            g_theta = self._calc_gijk(costheta, params)

            # Calculate the exponential for the bond order zeta term
            # This is the term that modifies the bond order based
            # on the distance between atoms i-j and i-k. Tresholds are
            # used to prevent overflow/underflow.
            arg = (params.lambda3 * (abs_rij - abs_rik)) ** params.m
            if arg > _MAX_EXP_ARG:
                ex_delr = 1.0e30
            elif arg < _MIN_EXP_ARG:
                ex_delr = 0.0
            else:
                ex_delr = np.exp(arg)

            zeta += fc_ik * g_theta * ex_delr

        return zeta

    def _calc_gijk(self, costheta: float, params: TersoffParameters) -> float:
        r"""Calculate the angular function ``g`` for the Tersoff potential.

        .. math::
            g(\theta) = \gamma \left( 1 + \frac{c^2}{d^2}
            - \frac{c^2}{d^2 + (h - \cos \theta)^2} \right)

        where :math:`\theta` is the angle between the bond vector
        and the vector of atom i and its neighbors j-k.
        """
        c2 = params.c * params.c
        d2 = params.d * params.d
        hcth = params.h - costheta
        return params.gamma * (1.0 + c2 / d2 - c2 / (d2 + hcth**2))

    def _calc_gijk_d(self, costheta: float, params: TersoffParameters) -> float:
        """Calculate the derivative of ``g`` with respect to ``costheta``."""
        c2 = params.c * params.c
        d2 = params.d * params.d
        hcth = params.h - costheta
        numerator = -2.0 * params.gamma * c2 * hcth
        denominator = (d2 + hcth**2) ** 2
        return numerator / denominator

    def _calc_fc(self, r: np.floating, R: float, D: float) -> float:
        """Calculate the cutoff function."""
        if r > R + D:
            return 0.0
        if r < R - D:
            return 1.0
        return 0.5 * (1.0 - np.sin(np.pi * (r - R) / (2.0 * D)))

    def _calc_fc_d(self, r: np.floating, R: float, D: float) -> float:
        """Calculate cutoff function derivative with respect to ``r``."""
        if r > R + D or r < R - D:
            return 0.0
        return -0.25 * np.pi / D * np.cos(np.pi * (r - R) / (2.0 * D))

    def _calc_zeta_d(
        self,
        rij: np.ndarray,
        rik: np.ndarray,
        params: TersoffParameters,
    ) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
        """Calculate the derivatives of ``zeta``.

        Returns
        -------
        dri : ndarray of shape (3,), dtype float
            Derivative with respect to the position of atom ``i``.
        drj : ndarray of shape (3,), dtype float
            Derivative with respect to the position of atom ``j``.
        drk : ndarray of shape (3,), dtype float
            Derivative with respect to the position of atom ``k``.

        """
        lam3 = params.lambda3
        m = params.m

        abs_rij = np.linalg.norm(rij)
        abs_rik = np.linalg.norm(rik)

        rij_hat = rij / abs_rij
        rik_hat = rik / abs_rik

        fcik = self._calc_fc(abs_rik, params.R, params.D)
        dfcik = self._calc_fc_d(abs_rik, params.R, params.D)

        tmp = (lam3 * (abs_rij - abs_rik)) ** m
        if tmp > _MAX_EXP_ARG:
            ex_delr = 1.0e30
        elif tmp < _MIN_EXP_ARG:
            ex_delr = 0.0
        else:
            ex_delr = np.exp(tmp)

        ex_delr_d = m * lam3**m * (abs_rij - abs_rik) ** (m - 1) * ex_delr

        costheta = rij_hat @ rik_hat
        gijk = self._calc_gijk(costheta, params)
        gijk_d = self._calc_gijk_d(costheta, params)

        dcosdri, dcosdrj, dcosdrk = self._calc_costheta_d(rij, rik)

        dri = -dfcik * gijk * ex_delr * rik_hat
        dri += fcik * gijk_d * ex_delr * dcosdri
        dri += fcik * gijk * ex_delr_d * rik_hat
        dri -= fcik * gijk * ex_delr_d * rij_hat

        drj = fcik * gijk_d * ex_delr * dcosdrj
        drj += fcik * gijk * ex_delr_d * rij_hat

        drk = dfcik * gijk * ex_delr * rik_hat
        drk += fcik * gijk_d * ex_delr * dcosdrk
        drk -= fcik * gijk * ex_delr_d * rik_hat

        return dri, drj, drk

    def _calc_costheta_d(
        self,
        rij: np.ndarray,
        rik: np.ndarray,
    ) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
        r"""Calculate the derivatives of ``costheta``.

        If

        .. math::
            \cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{u v}

        Then

        .. math::
            \frac{\partial \cos \theta}{\partial \mathbf{u}}
            = \frac{\mathbf{v}}{u v}
            - \frac{\mathbf{u} \cdot \mathbf{v}}{v} \cdot \frac{\mathbf{u}}{u^3}
            = \frac{\mathbf{v}}{u v} - \frac{\cos \theta}{u^2} \mathbf{u}

        Parameters
        ----------
        rij : ndarray of shape (3,), dtype float
            Vector from atoms ``i`` to ``j``.
        rik : ndarray of shape (3,), dtype float
            Vector from atoms ``i`` to ``k``.

        Returns
        -------
        dri : ndarray of shape (3,), dtype float
            Derivative with respect to the position of atom ``i``.
        drj : ndarray of shape (3,), dtype float
            Derivative with respect to the position of atom ``j``.
        drk : ndarray of shape (3,), dtype float
            Derivative with respect to the position of atom ``k``.

        """
        abs_rij = np.linalg.norm(rij)
        abs_rik = np.linalg.norm(rik)
        costheta = (rij @ rik) / (abs_rij * abs_rik)
        drj = (rik / abs_rik - costheta * rij / abs_rij) / abs_rij
        drk = (rij / abs_rij - costheta * rik / abs_rik) / abs_rik
        dri = -(drj + drk)
        return dri, drj, drk