File: parameters.py

package info (click to toggle)
python-ase 3.26.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,484 kB
  • sloc: python: 148,112; xml: 2,728; makefile: 110; javascript: 47
file content (814 lines) | stat: -rw-r--r-- 29,204 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
# fmt: off

# type: ignore
"""turbomole parameters management classes and functions"""

import os
import re
from math import floor, log10

import numpy as np

from ase.calculators.turbomole.reader import parse_data_group, read_data_group
from ase.calculators.turbomole.writer import add_data_group, delete_data_group
from ase.units import Bohr, Ha


class TurbomoleParameters(dict):
    """class to manage turbomole parameters"""

    available_functionals = [
        'slater-dirac-exchange', 's-vwn', 'vwn', 's-vwn_Gaussian', 'pwlda',
        'becke-exchange', 'b-lyp', 'b-vwn', 'lyp', 'b-p', 'pbe', 'tpss',
        'bh-lyp', 'b3-lyp', 'b3-lyp_Gaussian', 'pbe0', 'tpssh', 'lhf', 'oep',
        'b97-d', 'b2-plyp'
    ]

    # nested dictionary with parameters attributes
    parameter_spec = {
        'automatic orbital shift': {
            'comment': None,
            'default': 0.1,
            'group': 'scforbitalshift',
            'key': 'automatic',
            'mapping': {
                'to_control': lambda a: a / Ha,
                'from_control': lambda a: a * Ha
            },
            'type': float,
            'units': 'eV',
            'updateable': True
        },
        'basis set definition': {
            'comment': 'used only in restart',
            'default': None,
            'group': 'basis',
            'key': None,
            'type': list,
            'units': None,
            'updateable': False
        },
        'basis set name': {
            'comment': 'current default from module "define"',
            'default': 'def-SV(P)',
            'group': 'basis',
            'key': None,
            'type': str,
            'units': None,
            'updateable': False
        },
        'closed-shell orbital shift': {
            'comment': 'does not work with automatic',
            'default': None,
            'group': 'scforbitalshift',
            'key': 'closedshell',
            'mapping': {
                'to_control': lambda a: a / Ha,
                'from_control': lambda a: a * Ha
            },
            'type': float,
            'units': 'eV',
            'updateable': True
        },
        'damping adjustment step': {
            'comment': None,
            'default': None,
            'group': 'scfdamp',
            'key': 'step',
            'type': float,
            'units': None,
            'updateable': True
        },
        'default eht atomic orbitals': {
            'comment': None,
            'default': None,
            'group': None,
            'key': None,
            'type': bool,
            'units': None,
            'updateable': False
        },
        'density convergence': {
            'comment': None,
            'default': None,
            'group': 'denconv',
            'key': 'denconv',
            'non-define': True,
            'type': float,
            'units': None,
            'updateable': True
        },
        'density functional': {
            'comment': None,
            'default': 'b-p',
            'group': 'dft',
            'key': 'functional',
            'type': str,
            'units': None,
            'updateable': True
        },
        'energy convergence': {
            'comment': 'jobex -energy <int>',
            'default': None,
            'group': None,
            'key': None,
            'mapping': {
                'to_control': lambda a: a / Ha,
                'from_control': lambda a: a * Ha
            },
            'type': float,
            'units': 'eV',
            'updateable': True
        },
        'esp fit': {
            'comment': 'ESP fit',
            'default': None,
            'group': 'esp_fit',
            'key': 'esp_fit',
            'type': str,
            'units': None,
            'updateable': True,
            'non-define': True
        },
        'fermi annealing factor': {
            'comment': None,
            'default': 0.95,
            'group': 'fermi',
            'key': 'tmfac',
            'type': float,
            'units': None,
            'updateable': True
        },
        'fermi final temperature': {
            'comment': None,
            'default': 300.,
            'group': 'fermi',
            'key': 'tmend',
            'type': float,
            'units': 'Kelvin',
            'updateable': True
        },
        'fermi homo-lumo gap criterion': {
            'comment': None,
            'default': 0.1,
            'group': 'fermi',
            'key': 'hlcrt',
            'mapping': {
                'to_control': lambda a: a / Ha,
                'from_control': lambda a: a * Ha
            },
            'type': float,
            'units': 'eV',
            'updateable': True
        },
        'fermi initial temperature': {
            'comment': None,
            'default': 300.,
            'group': 'fermi',
            'key': 'tmstrt',
            'type': float,
            'units': 'Kelvin',
            'updateable': True
        },
        'fermi stopping criterion': {
            'comment': None,
            'default': 0.001,
            'group': 'fermi',
            'key': 'stop',
            'mapping': {
                'to_control': lambda a: a / Ha,
                'from_control': lambda a: a * Ha
            },
            'type': float,
            'units': 'eV',
            'updateable': True
        },
        'force convergence': {
            'comment': 'jobex -gcart <int>',
            'default': None,
            'group': None,
            'key': None,
            'mapping': {
                'to_control': lambda a: a / Ha * Bohr,
                'from_control': lambda a: a * Ha / Bohr
            },
            'type': float,
            'units': 'eV/Angstrom',
            'updateable': True
        },
        'geometry optimization iterations': {
            'comment': 'jobex -c <int>',
            'default': None,
            'group': None,
            'key': None,
            'type': int,
            'units': None,
            'updateable': True
        },
        'grid size': {
            'comment': None,
            'default': 'm3',
            'group': 'dft',
            'key': 'gridsize',
            'type': str,
            'units': None,
            'updateable': True
        },
        'ground state': {
            'comment': 'only this is currently supported',
            'default': True,
            'group': None,
            'key': None,
            'type': bool,
            'units': None,
            'updateable': False
        },
        'initial damping': {
            'comment': None,
            'default': None,
            'group': 'scfdamp',
            'key': 'start',
            'type': float,
            'units': None,
            'updateable': True
        },
        'initial guess': {
            'comment': '"eht", "hcore" or {"use": "<path/to/control>"}',
            'default': 'eht',
            'group': None,
            'key': None,
            'type': (str, dict),
            'units': None,
            'updateable': False
        },
        'minimal damping': {
            'comment': None,
            'default': None,
            'group': 'scfdamp',
            'key': 'min',
            'type': float,
            'units': None,
            'updateable': True
        },
        'multiplicity': {
            'comment': None,
            'default': None,
            'group': None,
            'key': None,
            'type': int,
            'units': None,
            'updateable': False
        },
        'non-automatic orbital shift': {
            'comment': None,
            'default': False,
            'group': 'scforbitalshift',
            'key': 'noautomatic',
            'type': bool,
            'units': None,
            'updateable': True
        },
        'numerical hessian': {
            'comment': 'NumForce will be used if dictionary exists',
            'default': None,
            'group': None,
            'key': None,
            'type': dict,
            'units': None,
            'updateable': True
        },
        'point group': {
            'comment': 'only c1 supported',
            'default': 'c1',
            'group': 'symmetry',
            'key': 'symmetry',
            'type': str,
            'units': None,
            'updateable': False
        },
        'ri memory': {
            'comment': None,
            'default': 1000,
            'group': 'ricore',
            'key': 'ricore',
            'type': int,
            'units': 'Megabyte',
            'updateable': True
        },
        'rohf': {
            'comment': 'used only in restart',
            'default': None,
            'group': None,
            'key': None,
            'type': bool,
            'units': None,
            'updateable': False
        },
        'scf energy convergence': {
            'comment': None,
            'default': None,
            'group': 'scfconv',
            'key': 'scfconv',
            'mapping': {
                'to_control': lambda a: int(floor(-log10(a / Ha))),
                'from_control': lambda a: 10**(-a) * Ha
            },
            'type': float,
            'units': 'eV',
            'updateable': True
        },
        'scf iterations': {
            'comment': None,
            'default': 60,
            'group': 'scfiterlimit',
            'key': 'scfiterlimit',
            'type': int,
            'units': None,
            'updateable': True
        },
        'task': {
            'comment': '"energy calculation" = "energy", '
                       '"gradient calculation" = "gradient", '
                       '"geometry optimization" = "optimize", '
                       '"normal mode analysis" = "frequencies"',
            'default': 'energy',
            'group': None,
            'key': None,
            'type': str,
            'units': None,
            'updateable': True
        },
        'title': {
            'comment': None,
            'default': '',
            'group': 'title',
            'key': 'title',
            'type': str,
            'units': None,
            'updateable': False
        },
        'total charge': {
            'comment': None,
            'default': 0,
            'group': None,
            'key': None,
            'type': int,
            'units': None,
            'updateable': False
        },
        'transition vector': {
            'comment': 'vector for transition state optimization',
            'default': None,
            'group': 'statpt',
            'key': 'itrvec',
            'type': int,
            'units': None,
            'updateable': True,
            'non-define': True
        },
        'uhf': {
            'comment': None,
            'default': None,
            'group': 'uhf',
            'key': 'uhf',
            'type': bool,
            'units': None,
            'updateable': False
        },
        'use basis set library': {
            'comment': 'only true implemented',
            'default': True,
            'group': 'basis',
            'key': None,
            'type': bool,
            'units': None,
            'updateable': False
        },
        'use dft': {
            'comment': None,
            'default': True,
            'group': 'dft',
            'key': 'dft',
            'type': bool,
            'units': None,
            'updateable': False
        },
        'use fermi smearing': {
            'comment': None,
            'default': False,
            'group': 'fermi',
            'key': 'fermi',
            'type': bool,
            'units': None,
            'updateable': True
        },
        'use redundant internals': {
            'comment': None,
            'default': False,
            'group': 'redundant',
            'key': None,
            'type': bool,
            'units': None,
            'updateable': False
        },
        'use resolution of identity': {
            'comment': None,
            'default': False,
            'group': 'rij',
            'key': 'rij',
            'type': bool,
            'units': None,
            'updateable': False
        }
    }

    spec_names = {
        'default': 'default_parameters',
        'comment': 'parameter_comment',
        'updateable': 'parameter_updateable',
        'type': 'parameter_type',
        'key': 'parameter_key',
        'group': 'parameter_group',
        'units': 'parameter_units',
        'mapping': 'parameter_mapping',
        'non-define': 'parameter_no_define'
    }
    # flat dictionaries with parameters attributes
    default_parameters = {}
    parameter_group = {}
    parameter_type = {}
    parameter_key = {}
    parameter_units = {}
    parameter_comment = {}
    parameter_updateable = {}
    parameter_mapping = {}
    parameter_no_define = {}

    def __init__(self, **kwargs):
        # construct flat dictionaries with parameter attributes
        for p in self.parameter_spec:
            for k in self.spec_names:
                if k in list(self.parameter_spec[p].keys()):
                    subdict = getattr(self, self.spec_names[k])
                    subdict.update({p: self.parameter_spec[p][k]})
        super().__init__(**self.default_parameters)
        self.update(kwargs)

    def update(self, dct):
        """check the type of parameters in dct and then update"""
        for par in dct.keys():
            if par not in self.parameter_spec:
                raise ValueError('invalid parameter: ' + par)

        for key, val in dct.items():
            correct_type = self.parameter_spec[key]['type']
            if not isinstance(val, (correct_type, type(None))):
                msg = str(key) + ' has wrong type: ' + str(type(val))
                raise TypeError(msg)
            self[key] = val

    def update_data_groups(self, params_update):
        """updates data groups in the control file"""
        # construct a list of data groups to update
        grps = []
        for p in list(params_update.keys()):
            if self.parameter_group[p] is not None:
                grps.append(self.parameter_group[p])

        # construct a dictionary of data groups and update params
        dgs = {}
        for g in grps:
            dgs[g] = {}
            for p in self.parameter_key:
                if g == self.parameter_group[p]:
                    if self.parameter_group[p] == self.parameter_key[p]:
                        if p in list(params_update.keys()):
                            val = params_update[p]
                            pmap = list(self.parameter_mapping.keys())
                            if val is not None and p in pmap:
                                fun = self.parameter_mapping[p]['to_control']
                                val = fun(params_update[p])
                            dgs[g] = val
                    else:
                        if p in list(self.params_old.keys()):
                            val = self.params_old[p]
                            pmap = list(self.parameter_mapping.keys())
                            if val is not None and p in pmap:
                                fun = self.parameter_mapping[p]['to_control']
                                val = fun(self.params_old[p])
                            dgs[g][self.parameter_key[p]] = val
                        if p in list(params_update.keys()):
                            val = params_update[p]
                            pmap = list(self.parameter_mapping.keys())
                            if val is not None and p in pmap:
                                fun = self.parameter_mapping[p]['to_control']
                                val = fun(params_update[p])
                            dgs[g][self.parameter_key[p]] = val

        # write dgs dictionary to a data group
        for g in dgs:
            delete_data_group(g)
            if isinstance(dgs[g], dict):
                string = ''
                for key in list(dgs[g].keys()):
                    if dgs[g][key] is None:
                        continue
                    elif isinstance(dgs[g][key], bool):
                        if dgs[g][key]:
                            string += ' ' + key
                    else:
                        string += ' ' + key + '=' + str(dgs[g][key])
                add_data_group(g, string=string)
            else:
                if isinstance(dgs[g], bool):
                    if dgs[g]:
                        add_data_group(g, string='')
                else:
                    add_data_group(g, string=str(dgs[g]))

    def update_no_define_parameters(self):
        """process key parameters that are not written with define"""
        for p, v in self.items():
            if self.parameter_no_define.get(p):
                if v:
                    if p in self.parameter_mapping:
                        fun = self.parameter_mapping[p]['to_control']
                        val = fun(v)
                    else:
                        val = v
                    delete_data_group(self.parameter_group[p])
                    if self.parameter_group[p] != self.parameter_key[p]:
                        val = '\n ' + self.parameter_key[p] + ' ' + str(val)
                    add_data_group(self.parameter_group[p], str(val))
                else:
                    delete_data_group(self.parameter_group[p])

    def verify(self):
        """detect wrong or not implemented parameters"""

        if getattr(self, 'define_str', None) is not None:
            assert isinstance(self.define_str, str), 'define_str must be str'
            assert len(self.define_str) != 0, 'define_str may not be empty'
        else:
            for par in self:
                assert par in self.parameter_spec, 'invalid parameter: ' + par

            if self.get('use dft'):
                func_list = [x.lower() for x in self.available_functionals]
                func = self['density functional']
                assert func.lower() in func_list, (
                    'density functional not available / not supported'
                )

            assert self['multiplicity'] is not None, 'multiplicity not defined'
            assert self['multiplicity'] > 0, 'multiplicity has wrong value'

            if self.get('rohf'):
                raise NotImplementedError('ROHF not implemented')
            if self['initial guess'] not in ['eht', 'hcore']:
                if not (isinstance(self['initial guess'], dict) and
                        'use' in self['initial guess'].keys()):
                    raise ValueError('Wrong input for initial guess')
            if not self['use basis set library']:
                raise NotImplementedError('Explicit basis set definition')
            if self['point group'] != 'c1':
                raise NotImplementedError('Point group not impemeneted')

    def get_define_str(self, natoms):
        """construct a define string from the parameters dictionary"""

        if getattr(self, 'define_str', None):
            return self.define_str

        define_str_tpl = (
            '\n__title__\na coord\n__inter__\n'
            'bb all __basis_set__\n*\neht\n__eht_aos_str__y\n__charge_str__'
            '__occ_str____single_atom_str____norb_str____dft_str____ri_str__'
            '__scfiterlimit____fermi_str____damp_str__q\n'
        )

        params = self

        if params['use redundant internals']:
            internals_str = 'ired\n*'
        else:
            internals_str = '*\nno'
        charge_str = str(params['total charge']) + '\n'

        if params['multiplicity'] == 1:
            if params['uhf']:
                occ_str = 'n\ns\n*\n'
            else:
                occ_str = 'y\n'
        elif params['multiplicity'] == 2:
            occ_str = 'y\n'
        elif params['multiplicity'] == 3:
            occ_str = 'n\nt\n*\n'
        else:
            unpaired = params['multiplicity'] - 1
            if params['use fermi smearing']:
                occ_str = 'n\nuf ' + str(unpaired) + '\n*\n'
            else:
                occ_str = 'n\nu ' + str(unpaired) + '\n*\n'

        if natoms != 1:
            single_atom_str = ''
        else:
            single_atom_str = '\n'

        if params['multiplicity'] == 1 and not params['uhf']:
            norb_str = ''
        else:
            norb_str = 'n\n'

        if params['use dft']:
            dft_str = 'dft\non\n*\n'
        else:
            dft_str = ''

        if params['density functional']:
            dft_str += 'dft\nfunc ' + params['density functional'] + '\n*\n'

        if params['grid size']:
            dft_str += 'dft\ngrid ' + params['grid size'] + '\n*\n'

        if params['use resolution of identity']:
            ri_str = 'ri\non\nm ' + str(params['ri memory']) + '\n*\n'
        else:
            ri_str = ''

        if params['scf iterations']:
            scfmaxiter = params['scf iterations']
            scfiter_str = 'scf\niter\n' + str(scfmaxiter) + '\n\n'
        else:
            scfiter_str = ''
        if params['scf energy convergence']:
            conv = floor(-log10(params['scf energy convergence'] / Ha))
            scfiter_str += 'scf\nconv\n' + str(int(conv)) + '\n\n'

        fermi_str = ''
        if params['use fermi smearing']:
            fermi_str = 'scf\nfermi\n'
            if params['fermi initial temperature']:
                par = str(params['fermi initial temperature'])
                fermi_str += '1\n' + par + '\n'
            if params['fermi final temperature']:
                par = str(params['fermi final temperature'])
                fermi_str += '2\n' + par + '\n'
            if params['fermi annealing factor']:
                par = str(params['fermi annealing factor'])
                fermi_str += '3\n' + par + '\n'
            if params['fermi homo-lumo gap criterion']:
                par = str(params['fermi homo-lumo gap criterion'])
                fermi_str += '4\n' + par + '\n'
            if params['fermi stopping criterion']:
                par = str(params['fermi stopping criterion'])
                fermi_str += '5\n' + par + '\n'
            fermi_str += '\n\n'

        damp_str = ''
        damp_keys = ('initial damping', 'damping adjustment step',
                     'minimal damping')
        damp_pars = [params[k] for k in damp_keys]
        if any(damp_pars):
            damp_str = 'scf\ndamp\n'
            for par in damp_pars:
                par_str = str(par) if par else ''
                damp_str += par_str + '\n'
            damp_str += '\n'

        eht_aos_str = 'y\n' if params['default eht atomic orbitals'] else ''

        define_str = define_str_tpl
        define_str = re.sub('__title__', params['title'], define_str)
        define_str = re.sub('__basis_set__', params['basis set name'],
                            define_str)
        define_str = re.sub('__charge_str__', charge_str, define_str)
        define_str = re.sub('__occ_str__', occ_str, define_str)
        define_str = re.sub('__norb_str__', norb_str, define_str)
        define_str = re.sub('__dft_str__', dft_str, define_str)
        define_str = re.sub('__ri_str__', ri_str, define_str)
        define_str = re.sub('__single_atom_str__', single_atom_str,
                            define_str)
        define_str = re.sub('__inter__', internals_str, define_str)
        define_str = re.sub('__scfiterlimit__', scfiter_str, define_str)
        define_str = re.sub('__fermi_str__', fermi_str, define_str)
        define_str = re.sub('__damp_str__', damp_str, define_str)
        define_str = re.sub('__eht_aos_str__', eht_aos_str, define_str)

        return define_str

    def read_restart(self, atoms, results):
        """read parameters from control file"""

        params = {}
        pdgs = {
            p: parse_data_group(
                read_data_group(
                    self.parameter_group[p]), self.parameter_group[p]
            )
            for p in self.parameter_group
            if self.parameter_group[p] and self.parameter_key[p]
        }
        for p in self.parameter_key:
            if self.parameter_key[p]:
                if self.parameter_key[p] == self.parameter_group[p]:
                    if pdgs[p] is None:
                        if self.parameter_type[p] is bool:
                            params[p] = False
                        else:
                            params[p] = None
                    else:
                        if self.parameter_type[p] is bool:
                            params[p] = True
                        else:
                            typ = self.parameter_type[p]
                            val = typ(pdgs[p])
                            mapping = self.parameter_mapping
                            if p in list(mapping.keys()):
                                fun = mapping[p]['from_control']
                                val = fun(val)
                            params[p] = val
                else:
                    if pdgs[p] is None:
                        params[p] = None
                    elif isinstance(pdgs[p], str):
                        if self.parameter_type[p] is bool:
                            params[p] = (pdgs[p] == self.parameter_key[p])
                    else:
                        if self.parameter_key[p] not in list(pdgs[p].keys()):
                            if self.parameter_type[p] is bool:
                                params[p] = False
                            else:
                                params[p] = None
                        else:
                            typ = self.parameter_type[p]
                            val = typ(pdgs[p][self.parameter_key[p]])
                            mapping = self.parameter_mapping
                            if p in list(mapping.keys()):
                                fun = mapping[p]['from_control']
                                val = fun(val)
                            params[p] = val

        # non-group or non-key parameters

        # per-element and per-atom basis sets not implemented in calculator
        basis_sets = {bs['nickname'] for bs in results['basis set']}
        assert len(basis_sets) == 1
        params['basis set name'] = list(basis_sets)[0]
        params['basis set definition'] = results['basis set']

        # rohf, multiplicity and total charge
        orbs = results['molecular orbitals']
        params['rohf'] = (bool(len(read_data_group('rohf'))) or
                          bool(len(read_data_group('roothaan'))))
        core_charge = 0
        if results['ecps']:
            for ecp in results['ecps']:
                for symbol in atoms.get_chemical_symbols():
                    if symbol.lower() == ecp['element'].lower():
                        core_charge -= ecp['number of core electrons']
        if params['uhf']:
            alpha_occ = [o['occupancy'] for o in orbs if o['spin'] == 'alpha']
            beta_occ = [o['occupancy'] for o in orbs if o['spin'] == 'beta']
            spin = (np.sum(alpha_occ) - np.sum(beta_occ)) * 0.5
            params['multiplicity'] = int(2 * spin + 1)
            nuclear_charge = int(sum(atoms.numbers))
            electron_charge = -int(sum(alpha_occ) + sum(beta_occ))
            electron_charge += core_charge
            params['total charge'] = nuclear_charge + electron_charge
        elif not params['rohf']:  # restricted HF (closed shell)
            params['multiplicity'] = 1
            nuclear_charge = int(sum(atoms.numbers))
            electron_charge = -int(sum(o['occupancy'] for o in orbs))
            electron_charge += core_charge
            params['total charge'] = nuclear_charge + electron_charge
        else:
            raise NotImplementedError('ROHF not implemented')

        # task-related parameters
        if os.path.exists('job.start'):
            with open('job.start') as log:
                lines = log.readlines()
            for line in lines:
                if 'CRITERION FOR TOTAL SCF-ENERGY' in line:
                    en = int(re.search(r'10\*{2}\((-\d+)\)', line).group(1))
                    mapp = self.parameter_mapping['energy convergence']
                    params['energy convergence'] = mapp['from_control'](10**en)
                if 'CRITERION FOR MAXIMUM NORM OF SCF-ENERGY GRADIENT' in line:
                    gr = int(re.search(r'10\*{2}\((-\d+)\)', line).group(1))
                    mapp = self.parameter_mapping['force convergence']
                    params['force convergence'] = mapp['from_control'](10**gr)
                if 'AN OPTIMIZATION WITH MAX' in line:
                    cy = int(re.search(r'MAX. (\d+) CYCLES', line).group(1))
                    params['geometry optimization iterations'] = cy
        self.update(params)
        self.params_old = params

    def update_restart(self, dct):
        """update parameters after a restart"""
        nulst = [k for k in dct.keys() if not self.parameter_updateable[k]]
        if len(nulst) != 0:
            raise ValueError(f'parameters {nulst} cannot be changed')
        self.update(dct)
        self.update_data_groups(dct)