1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
|
# fmt: off
"""Functions to read from control file and from turbomole standard output"""
import os
import re
import subprocess
import warnings
import numpy as np
from ase import Atom, Atoms
from ase.calculators.calculator import ReadError
from ase.units import Bohr, Ha
def execute_command(args):
"""execute commands like sdg, eiger"""
proc = subprocess.Popen(args, stdout=subprocess.PIPE, encoding='ASCII')
stdout, _stderr = proc.communicate()
return stdout
def read_data_group(data_group):
"""read a turbomole data group from control file"""
return execute_command(['sdg', data_group]).strip()
def parse_data_group(dgr, dg_name):
"""parse a data group"""
if len(dgr) == 0:
return None
dg_key = '$' + dg_name
if not dgr.startswith(dg_key):
raise ValueError(f'data group does not start with {dg_key}')
ndg = dgr.replace(dg_key, '').strip()
ndg = re.sub(r'=\s+', '=', re.sub(r'\s+=', '=', ndg))
if all(c not in ndg for c in ('\n', ' ', '=')):
return ndg
lsep = '\n' if '\n' in dgr else ' '
result = {}
lines = ndg.split(lsep)
for line in lines:
if len(line) == 0:
continue
ksep = '=' if '=' in line else None
fields = line.strip().split(ksep)
if len(fields) == 2:
result[fields[0]] = fields[1]
elif len(fields) == 1:
result[fields[0]] = True
return result
def read_output(regex, path):
"""collects all matching strings from the output"""
hitlist = []
checkfiles = []
for filename in os.listdir(path):
if filename.startswith('job.') or filename.endswith('.out'):
checkfiles.append(filename)
for filename in checkfiles:
with open(filename) as f:
lines = f.readlines()
for line in lines:
match = re.search(regex, line)
if match:
hitlist.append(match.group(1))
return hitlist
def read_version(path):
"""read the version from the tm output if stored in a file"""
versions = read_output(r'TURBOMOLE\s+V(\d+\.\d+)\s+', path)
if len(set(versions)) > 1:
warnings.warn('different turbomole versions detected')
version = list(set(versions))
elif len(versions) == 0:
warnings.warn('no turbomole version detected')
version = None
else:
version = versions[0]
return version
def read_datetime(path):
"""read the datetime of the most recent calculation
from the tm output if stored in a file
"""
datetimes = read_output(
r'(\d{4}-[01]\d-[0-3]\d([T\s][0-2]\d:[0-5]'
r'\d:[0-5]\d\.\d+)?([+-][0-2]\d:[0-5]\d|Z)?)', path)
if len(datetimes) == 0:
warnings.warn('no turbomole datetime detected')
datetime = None
else:
# take the most recent time stamp
datetime = sorted(datetimes, reverse=True)[0]
return datetime
def read_runtime(path):
"""read the total runtime of calculations"""
hits = read_output(r'total wall-time\s+:\s+(\d+.\d+)\s+seconds', path)
if len(hits) == 0:
warnings.warn('no turbomole runtimes detected')
runtime = None
else:
runtime = np.sum([float(a) for a in hits])
return runtime
def read_hostname(path):
"""read the hostname of the computer on which the calc has run"""
hostnames = read_output(r'hostname is\s+(.+)', path)
if len(set(hostnames)) > 1:
warnings.warn('runs on different hosts detected')
hostname = list(set(hostnames))
else:
hostname = hostnames[0]
return hostname
def read_convergence(restart, parameters):
"""perform convergence checks"""
if restart:
if bool(len(read_data_group('restart'))):
return False
if bool(len(read_data_group('actual'))):
return False
if not bool(len(read_data_group('energy'))):
return False
if (os.path.exists('job.start') and
os.path.exists('GEO_OPT_FAILED')):
return False
return True
if parameters['task'] in ['optimize', 'geometry optimization']:
if os.path.exists('GEO_OPT_CONVERGED'):
return True
elif os.path.exists('GEO_OPT_FAILED'):
# check whether a failed scf convergence is the reason
checkfiles = []
for filename in os.listdir('.'):
if filename.startswith('job.'):
checkfiles.append(filename)
for filename in checkfiles:
for line in open(filename):
if 'SCF FAILED TO CONVERGE' in line:
# scf did not converge in some jobex iteration
if filename == 'job.last':
raise RuntimeError('scf failed to converge')
else:
warnings.warn('scf failed to converge')
warnings.warn('geometry optimization failed to converge')
return False
else:
raise RuntimeError('error during geometry optimization')
else:
if os.path.isfile('dscf_problem'):
raise RuntimeError('scf failed to converge')
else:
return True
def read_run_parameters(results):
"""read parameters set by define and not in self.parameters"""
if 'calculation parameters' not in results.keys():
results['calculation parameters'] = {}
parameters = results['calculation parameters']
dg = read_data_group('symmetry')
parameters['point group'] = str(dg.split()[1])
parameters['uhf'] = '$uhf' in read_data_group('uhf')
# Gaussian function type
gt = read_data_group('pople')
if gt == '':
parameters['gaussian type'] = 'spherical harmonic'
else:
gt = gt.split()[1]
if gt == 'AO':
parameters['gaussian type'] = 'spherical harmonic'
elif gt == 'CAO':
parameters['gaussian type'] = 'cartesian'
else:
parameters['gaussian type'] = None
nvibro = read_data_group('nvibro')
if nvibro:
parameters['nuclear degrees of freedom'] = int(nvibro.split()[1])
def read_energy(results, post_HF):
"""Read energy from Turbomole energy file."""
try:
with open('energy') as enf:
text = enf.read().lower()
except OSError:
raise ReadError('failed to read energy file')
if text == '':
raise ReadError('empty energy file')
lines = iter(text.split('\n'))
for line in lines:
if line.startswith('$end'):
break
elif line.startswith('$'):
pass
else:
energy_tmp = float(line.split()[1])
if post_HF:
energy_tmp += float(line.split()[4])
# update energy units
e_total = energy_tmp * Ha
results['total energy'] = e_total
def read_occupation_numbers(results):
"""read occupation numbers with module 'eiger' """
if 'molecular orbitals' not in results.keys():
return
mos = results['molecular orbitals']
lines = execute_command(['eiger', '--all', '--pview']).split('\n')
for line in lines:
regex = (
r'^\s+(\d+)\.\s([\sab])\s*(\d+)\s?(\w+)'
r'\s+(\d*\.*\d*)\s+([-+]?\d+\.\d*)'
)
match = re.search(regex, line)
if match:
orb_index = int(match.group(3))
if match.group(2) == 'a':
spin = 'alpha'
elif match.group(2) == 'b':
spin = 'beta'
else:
spin = None
ar_index = next(
index for (index, molecular_orbital) in enumerate(mos)
if (molecular_orbital['index'] == orb_index and
molecular_orbital['spin'] == spin)
)
mos[ar_index]['index by energy'] = int(match.group(1))
irrep = str(match.group(4))
mos[ar_index]['irreducible representation'] = irrep
if match.group(5) != '':
mos[ar_index]['occupancy'] = float(match.group(5))
else:
mos[ar_index]['occupancy'] = float(0)
def read_mos(results):
"""read the molecular orbital coefficients and orbital energies
from files mos, alpha and beta"""
results['molecular orbitals'] = []
mos = results['molecular orbitals']
keywords = ['scfmo', 'uhfmo_alpha', 'uhfmo_beta']
spin = [None, 'alpha', 'beta']
converged = None
for index, keyword in enumerate(keywords):
flen = None
mo = {}
orbitals_coefficients_line = []
mo_string = read_data_group(keyword)
if mo_string == '':
continue
mo_string += '\n$end'
lines = mo_string.split('\n')
for line in lines:
if re.match(r'^\s*#', line):
continue
if 'eigenvalue' in line:
if len(orbitals_coefficients_line) != 0:
mo['eigenvector'] = orbitals_coefficients_line
mos.append(mo)
mo = {}
orbitals_coefficients_line = []
regex = (r'^\s*(\d+)\s+(\S+)\s+'
r'eigenvalue=([\+\-\d\.\w]+)\s')
match = re.search(regex, line)
mo['index'] = int(match.group(1))
mo['irreducible representation'] = str(match.group(2))
eig = float(re.sub('[dD]', 'E', match.group(3))) * Ha
mo['eigenvalue'] = eig
mo['spin'] = spin[index]
mo['degeneracy'] = 1
continue
if keyword in line:
# e.g. format(4d20.14)
regex = r'format\(\d+[a-zA-Z](\d+)\.\d+\)'
match = re.search(regex, line)
if match:
flen = int(match.group(1))
if ('scfdump' in line or 'expanded' in line or
'scfconv' not in line):
converged = False
continue
if '$end' in line:
if len(orbitals_coefficients_line) != 0:
mo['eigenvector'] = orbitals_coefficients_line
mos.append(mo)
break
sfields = [line[i:i + flen]
for i in range(0, len(line), flen)]
ffields = [float(f.replace('D', 'E').replace('d', 'E'))
for f in sfields]
orbitals_coefficients_line += ffields
return converged
def read_basis_set(results):
"""read the basis set"""
results['basis set'] = []
results['basis set formatted'] = {}
bsf = read_data_group('basis')
results['basis set formatted']['turbomole'] = bsf
lines = bsf.split('\n')
basis_set = {}
functions = []
function = {}
primitives = []
read_tag = False
read_data = False
for line in lines:
if len(line.strip()) == 0:
continue
if '$basis' in line:
continue
if '$end' in line:
break
if re.match(r'^\s*#', line):
continue
if re.match(r'^\s*\*', line):
if read_tag:
read_tag = False
read_data = True
else:
if read_data:
# end primitives
function['primitive functions'] = primitives
function['number of primitives'] = len(primitives)
primitives = []
functions.append(function)
function = {}
# end contracted
basis_set['functions'] = functions
functions = []
results['basis set'].append(basis_set)
basis_set = {}
read_data = False
read_tag = True
continue
if read_tag:
match = re.search(r'^\s*(\w+)\s+(.+)', line)
if match:
basis_set['element'] = match.group(1)
basis_set['nickname'] = match.group(2)
else:
raise RuntimeError('error reading basis set')
else:
match = re.search(r'^\s+(\d+)\s+(\w+)', line)
if match:
if len(primitives) > 0:
# end primitives
function['primitive functions'] = primitives
function['number of primitives'] = len(primitives)
primitives = []
functions.append(function)
function = {}
# begin contracted
function['shell type'] = str(match.group(2))
continue
regex = (
r'^\s*([-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?)'
r'\s+([-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?)'
)
match = re.search(regex, line)
if match:
exponent = float(match.group(1))
coefficient = float(match.group(3))
primitives.append(
{'exponent': exponent, 'coefficient': coefficient}
)
def read_ecps(results):
"""read the effective core potentials"""
ecpf = read_data_group('ecp')
if not bool(len(ecpf)):
results['ecps'] = None
results['ecps formatted'] = None
return
results['ecps'] = []
results['ecps formatted'] = {}
results['ecps formatted']['turbomole'] = ecpf
lines = ecpf.split('\n')
ecp = {}
groups = []
group = {}
terms = []
read_tag = False
read_data = False
for line in lines:
if len(line.strip()) == 0:
continue
if '$ecp' in line:
continue
if '$end' in line:
break
if re.match(r'^\s*#', line):
continue
if re.match(r'^\s*\*', line):
if read_tag:
read_tag = False
read_data = True
else:
if read_data:
# end terms
group['terms'] = terms
group['number of terms'] = len(terms)
terms = []
groups.append(group)
group = {}
# end group
ecp['groups'] = groups
groups = []
results['ecps'].append(ecp)
ecp = {}
read_data = False
read_tag = True
continue
if read_tag:
match = re.search(r'^\s*(\w+)\s+(.+)', line)
if match:
ecp['element'] = match.group(1)
ecp['nickname'] = match.group(2)
else:
raise RuntimeError('error reading ecp')
else:
regex = r'ncore\s*=\s*(\d+)\s+lmax\s*=\s*(\d+)'
match = re.search(regex, line)
if match:
ecp['number of core electrons'] = int(match.group(1))
ecp['maximum angular momentum number'] = \
int(match.group(2))
continue
match = re.search(r'^(\w(\-\w)?)', line)
if match:
if len(terms) > 0:
# end terms
group['terms'] = terms
group['number of terms'] = len(terms)
terms = []
groups.append(group)
group = {}
# begin group
group['title'] = str(match.group(1))
continue
regex = (r'^\s*([-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?)\s+'
r'(\d)\s+([-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?)')
match = re.search(regex, line)
if match:
terms.append(
{
'coefficient': float(match.group(1)),
'power of r': float(match.group(3)),
'exponent': float(match.group(4))
}
)
def read_forces(results, natoms):
"""Read forces from Turbomole gradient file."""
dg = read_data_group('grad')
if len(dg) == 0:
return None
with open('gradient') as file:
lines = file.readlines()
forces = np.array([[0, 0, 0]])
nline = len(lines)
iline = -1
for i in range(nline):
if 'cycle' in lines[i]:
iline = i
if iline < 0:
raise RuntimeError('Please check TURBOMOLE gradients')
# next line
iline += natoms + 1
# $end line
nline -= 1
# read gradients
for i in range(iline, nline):
line = lines[i].replace('D', 'E')
tmp = np.array([[float(f) for f in line.split()[0:3]]])
forces = np.concatenate((forces, tmp))
# Note the '-' sign for turbomole, to get forces
forces = -np.delete(forces, np.s_[0:1], axis=0) * Ha / Bohr
results['energy gradient'] = (-forces).tolist()
return forces
def read_gradient(results):
"""read all information in file 'gradient'"""
grad_string = read_data_group('grad')
if len(grad_string) == 0:
return
# try to reuse ase:
# structures = read('gradient', index=':')
lines = grad_string.split('\n')
history = []
image = {}
gradient = []
atoms = Atoms()
(cycle, energy, norm) = (None, None, None)
for line in lines:
# cycle lines
regex = (
r'^\s*cycle =\s*(\d+)\s+'
r'SCF energy =\s*([-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?)\s+'
r'\|dE\/dxyz\| =\s*([-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?)'
)
match = re.search(regex, line)
if match:
if len(atoms):
image['optimization cycle'] = cycle
image['total energy'] = energy
image['gradient norm'] = norm
image['energy gradient'] = gradient
history.append(image)
image = {}
atoms = Atoms()
gradient = []
cycle = int(match.group(1))
energy = float(match.group(2)) * Ha
norm = float(match.group(4)) * Ha / Bohr
continue
# coordinate lines
regex = (
r'^\s*([-+]?[0-9]*\.?[0-9]+([eEdD][-+]?[0-9]+)?)'
r'\s+([-+]?[0-9]*\.?[0-9]+([eEdD][-+]?[0-9]+)?)'
r'\s+([-+]?[0-9]*\.?[0-9]+([eEdD][-+]?[0-9]+)?)'
r'\s+(\w+)'
)
match = re.search(regex, line)
if match:
x = float(match.group(1)) * Bohr
y = float(match.group(3)) * Bohr
z = float(match.group(5)) * Bohr
symbol = str(match.group(7)).capitalize()
if symbol == 'Q':
symbol = 'X'
atoms += Atom(symbol, (x, y, z))
continue
# gradient lines
regex = (
r'^\s*([-+]?[0-9]*\.?[0-9]+([eEdD][-+]?[0-9]+)?)'
r'\s+([-+]?[0-9]*\.?[0-9]+([eEdD][-+]?[0-9]+)?)'
r'\s+([-+]?[0-9]*\.?[0-9]+([eEdD][-+]?[0-9]+)?)'
)
match = re.search(regex, line)
if match:
gradx = float(match.group(1).replace('D', 'E')) * Ha / Bohr
grady = float(match.group(3).replace('D', 'E')) * Ha / Bohr
gradz = float(match.group(5).replace('D', 'E')) * Ha / Bohr
gradient.append([gradx, grady, gradz])
image['optimization cycle'] = cycle
image['total energy'] = energy
image['gradient norm'] = norm
image['energy gradient'] = gradient
history.append(image)
results['geometry optimization history'] = history
def read_hessian(results, noproj=False):
"""Read in the hessian matrix"""
results['hessian matrix'] = {}
results['hessian matrix']['array'] = []
results['hessian matrix']['units'] = '?'
results['hessian matrix']['projected'] = True
results['hessian matrix']['mass weighted'] = True
dg = read_data_group('nvibro')
if len(dg) == 0:
return
nvibro = int(dg.split()[1])
results['hessian matrix']['dimension'] = nvibro
row = []
key = 'hessian'
if noproj:
key = 'npr' + key
results['hessian matrix']['projected'] = False
lines = read_data_group(key).split('\n')
for line in lines:
if key in line:
continue
fields = line.split()
row.extend(fields[2:len(fields)])
if len(row) == nvibro:
# check whether it is mass-weighted
float_row = [float(element) for element in row]
results['hessian matrix']['array'].append(float_row)
row = []
def read_normal_modes(results, noproj=False):
"""Read in vibrational normal modes"""
results['normal modes'] = {}
results['normal modes']['array'] = []
results['normal modes']['projected'] = True
results['normal modes']['mass weighted'] = True
results['normal modes']['units'] = '?'
dg = read_data_group('nvibro')
if len(dg) == 0:
return
nvibro = int(dg.split()[1])
results['normal modes']['dimension'] = nvibro
row = []
key = 'vibrational normal modes'
if noproj:
key = 'npr' + key
results['normal modes']['projected'] = False
lines = read_data_group(key).split('\n')
for line in lines:
if key in line:
continue
if '$end' in line:
break
fields = line.split()
row.extend(fields[2:len(fields)])
if len(row) == nvibro:
# check whether it is mass-weighted
float_row = [float(element) for element in row]
results['normal modes']['array'].append(float_row)
row = []
def read_vibrational_reduced_masses(results):
"""Read vibrational reduced masses"""
results['vibrational reduced masses'] = []
dg = read_data_group('vibrational reduced masses')
if len(dg) == 0:
return
lines = dg.split('\n')
for line in lines:
if '$vibrational' in line:
continue
if '$end' in line:
break
fields = [float(element) for element in line.split()]
results['vibrational reduced masses'].extend(fields)
def read_vibrational_spectrum(results, noproj=False):
"""Read the vibrational spectrum"""
results['vibrational spectrum'] = []
key = 'vibrational spectrum'
if noproj:
key = 'npr' + key
lines = read_data_group(key).split('\n')
for line in lines:
dictionary = {}
regex = (
r'^\s+(\d+)\s+(\S*)\s+([-+]?\d+\.\d*)'
r'\s+(\d+\.\d*)\s+(\S+)\s+(\S+)'
)
match = re.search(regex, line)
if match:
dictionary['mode number'] = int(match.group(1))
dictionary['irreducible representation'] = str(match.group(2))
dictionary['frequency'] = {
'units': 'cm^-1',
'value': float(match.group(3))
}
dictionary['infrared intensity'] = {
'units': 'km/mol',
'value': float(match.group(4))
}
if match.group(5) == 'YES':
dictionary['infrared active'] = True
elif match.group(5) == 'NO':
dictionary['infrared active'] = False
else:
dictionary['infrared active'] = None
if match.group(6) == 'YES':
dictionary['Raman active'] = True
elif match.group(6) == 'NO':
dictionary['Raman active'] = False
else:
dictionary['Raman active'] = None
results['vibrational spectrum'].append(dictionary)
def read_ssquare(results):
"""Read the expectation value of S^2 operator"""
s2_string = read_data_group('ssquare from dscf')
if s2_string == '':
return
string = s2_string.split('\n')[1]
ssquare = float(re.search(r'^\s*(\d+\.*\d*)', string).group(1))
results['ssquare from scf calculation'] = ssquare
def read_dipole_moment(results):
"""Read the dipole moment"""
dip_string = read_data_group('dipole')
if dip_string == '':
return
lines = dip_string.split('\n')
for line in lines:
regex = (
r'^\s+x\s+([-+]?\d+\.\d*)\s+y\s+([-+]?\d+\.\d*)'
r'\s+z\s+([-+]?\d+\.\d*)\s+a\.u\.'
)
match = re.search(regex, line)
if match:
dip_vec = [float(match.group(c)) for c in range(1, 4)]
regex = r'^\s+\| dipole \| =\s+(\d+\.*\d*)\s+debye'
match = re.search(regex, line)
if match:
dip_abs_val = float(match.group(1))
results['electric dipole moment'] = {}
results['electric dipole moment']['vector'] = {
'array': dip_vec,
'units': 'a.u.'
}
results['electric dipole moment']['absolute value'] = {
'value': dip_abs_val,
'units': 'Debye'
}
def read_charges(filename, natoms):
"""read partial charges on atoms from an ESP fit"""
charges = None
if os.path.exists(filename):
with open(filename) as infile:
lines = infile.readlines()
oklines = None
for n, line in enumerate(lines):
if 'atom radius/au charge' in line:
oklines = lines[n + 1:n + natoms + 1]
if oklines is not None:
qm_charges = [float(line.split()[3]) for line in oklines]
charges = np.array(qm_charges)
return charges
def read_point_charges():
"""read point charges from previous calculation"""
pcs = read_data_group('point_charges')
lines = pcs.split('\n')[1:]
(charges, positions) = ([], [])
for line in lines:
columns = [float(col) for col in line.strip().split()]
positions.append([col * Bohr for col in columns[0:3]])
charges.append(columns[3])
return charges, positions
|